Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Cell ; 184(20): 5215-5229.e17, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559986

RESUMEN

Estrogen receptor α (ERα) is a hormone receptor and key driver for over 70% of breast cancers that has been studied for decades as a transcription factor. Unexpectedly, we discover that ERα is a potent non-canonical RNA-binding protein. We show that ERα RNA binding function is uncoupled from its activity to bind DNA and critical for breast cancer progression. Employing genome-wide cross-linking immunoprecipitation (CLIP) sequencing and a functional CRISPRi screen, we find that ERα-associated mRNAs sustain cancer cell fitness and elicit cellular responses to stress. Mechanistically, ERα controls different steps of RNA metabolism. In particular, we demonstrate that ERα RNA binding mediates alternative splicing of XBP1 and translation of the eIF4G2 and MCL1 mRNAs, which facilitates survival upon stress conditions and sustains tamoxifen resistance of cancer cells. ERα is therefore a multifaceted RNA-binding protein, and this activity transforms our knowledge of post-transcriptional regulation underlying cancer development and drug response.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Ratones Endogámicos NOD , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Oncogenes , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Tamoxifeno/farmacología , Proteína 1 de Unión a la X-Box/metabolismo
4.
Nat Cell Biol ; 22(6): 728-739, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32367049

RESUMEN

The crosstalk between deregulated hepatocyte metabolism and cells within the tumour microenvironment, as well as the consequent effects on liver tumorigenesis, are not completely understood. We show here that hepatocyte-specific loss of the gluconeogenic enzyme fructose 1,6-bisphosphatase 1 (FBP1) disrupts liver metabolic homeostasis and promotes tumour progression. FBP1 is universally silenced in both human and murine liver tumours. Hepatocyte-specific Fbp1 deletion results in steatosis, concomitant with activation and senescence of hepatic stellate cells (HSCs), exhibiting a senescence-associated secretory phenotype. Depleting senescent HSCs by 'senolytic' treatment with dasatinib/quercetin or ABT-263 inhibits tumour progression. We further demonstrate that FBP1-deficient hepatocytes promote HSC activation by releasing HMGB1; blocking its release with the small molecule inflachromene limits FBP1-dependent HSC activation, the subsequent development of the senescence-associated secretory phenotype and tumour progression. Collectively, these findings provide genetic evidence for FBP1 as a metabolic tumour suppressor in liver cancer and establish a critical crosstalk between hepatocyte metabolism and HSC senescence that promotes tumour growth.


Asunto(s)
Carcinogénesis/patología , Proliferación Celular , Senescencia Celular , Fructosa-Bifosfatasa/fisiología , Regulación Neoplásica de la Expresión Génica , Células Estrelladas Hepáticas/patología , Neoplasias Hepáticas/patología , Animales , Carcinogénesis/metabolismo , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nat Commun ; 11(1): 498, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980651

RESUMEN

Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.


Asunto(s)
Glutamina/metabolismo , Sarcoma/metabolismo , Sarcoma/patología , Aloinjertos/efectos de los fármacos , Aloinjertos/metabolismo , Animales , Bencenoacetamidas/farmacología , Bencenoacetamidas/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Glutaminasa/metabolismo , Ratones , Nucleósidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcoma/diagnóstico por imagen , Sarcoma/tratamiento farmacológico , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Tomografía Computarizada por Rayos X
6.
Cell Metab ; 31(1): 174-188.e7, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31761563

RESUMEN

The remarkable cellular and genetic heterogeneity of soft tissue sarcomas (STSs) limits the clinical benefit of targeted therapies. Here, we show that expression of the gluconeogenic isozyme fructose-1,6-bisphosphatase 2 (FBP2) is silenced in a broad spectrum of sarcoma subtypes, revealing an apparent common metabolic feature shared by diverse STSs. Enforced FBP2 expression inhibits sarcoma cell and tumor growth through two distinct mechanisms. First, cytosolic FBP2 antagonizes elevated glycolysis associated with the "Warburg effect," thereby inhibiting sarcoma cell proliferation. Second, nuclear-localized FBP2 restrains mitochondrial biogenesis and respiration in a catalytic-activity-independent manner by inhibiting the expression of nuclear respiratory factor and mitochondrial transcription factor A (TFAM). Specifically, nuclear FBP2 colocalizes with the c-Myc transcription factor at the TFAM locus and represses c-Myc-dependent TFAM expression. This unique dual function of FBP2 provides a rationale for its selective suppression in STSs, identifying a potential metabolic vulnerability of this malignancy and possible therapeutic target.


Asunto(s)
Núcleo Celular/metabolismo , Proliferación Celular/genética , Fructosa-Bifosfatasa/metabolismo , Glucólisis/genética , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sarcoma/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/genética , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citosol/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo , Doxiciclina/farmacología , Femenino , Fructosa-Bifosfatasa/genética , Expresión Génica , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucólisis/efectos de los fármacos , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Inmunohistoquímica , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/ultraestructura , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Sarcoma/enzimología , Sarcoma/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Dis Model Mech ; 11(8)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29991493

RESUMEN

The study of cellular metabolism has been rigorously revisited over the past decade, especially in the field of cancer research, revealing new insights that expand our understanding of malignancy. Among these insights is the discovery that various metabolic enzymes have surprising activities outside of their established metabolic roles, including in the regulation of gene expression, DNA damage repair, cell cycle progression and apoptosis. Many of these newly identified functions are activated in response to growth factor signaling, nutrient and oxygen availability, and external stress. As such, multifaceted enzymes directly link metabolism to gene transcription and diverse physiological and pathological processes to maintain cell homeostasis. In this Review, we summarize the current understanding of non-canonical functions of multifaceted metabolic enzymes in disease settings, especially cancer, and discuss specific circumstances in which they are employed. We also highlight the important role of subcellular localization in activating these novel functions. Understanding their non-canonical properties should enhance the development of new therapeutic strategies for cancer treatment.


Asunto(s)
Enzimas/metabolismo , Animales , Núcleo Celular/enzimología , Terapia Enzimática , Regulación de la Expresión Génica , Humanos , Mitocondrias/enzimología , Modelos Biológicos , Complejos Multiproteicos/metabolismo
8.
Sci Signal ; 8(375): ra42, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25943352

RESUMEN

Receptor tyrosine kinase (RTK) signaling promotes the growth and progression of glioblastoma (GBM), a highly aggressive type of brain tumor. We previously reported that decreased miR-218 expression in GBM directly promotes RTK activity by increasing the expression of key RTKs and their signaling mediators, including the RTK epidermal growth factor receptor (EGFR), phospholipase C-γ1 (PLCγ1), and the kinases PIK3CA and ARAF. However, increased RTK signaling usually activates negative feedback mechanisms to maintain homeostasis. We found that decreased miR-218 expression in GBM cells also increased the expression of genes encoding additional upstream and downstream components of RTK signaling pathways, including the RTK platelet-derived growth factor receptor α (PDGFRα) and the kinases ribosomal S6 kinase 2 (RSK2) and S6 kinase 1 (S6K1), that collectively overrode the negative feedback mechanism. Furthermore, increased RTK signaling itself suppressed miR-218 expression. Mass spectrometry and DNA pull-down identified binding of signal transducer and activator of transcription 3 (STAT3) along with the transcriptional repressor BCL2-associated transcription factor 1 (BCLAF1) directly to the miR-218 locus. These data identify previously unknown feedback loops by which miR-218 repression promotes increased RTK signaling in high-grade gliomas.


Asunto(s)
Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patología , Humanos , MicroARNs/genética , ARN Neoplásico/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
PLoS Biol ; 12(3): e1001819, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24667498

RESUMEN

Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.


Asunto(s)
Neoplasias del Colon/genética , Histona Demetilasas con Dominio de Jumonji/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinogénesis/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología
10.
Curr Cancer Drug Targets ; 13(9): 973-85, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24168185

RESUMEN

Epithelial-mesenchymal transition (EMT) is a vital process implemented in embryo development, organ fibrosis, and cancer metastasis. Several transcription factors and signaling pathways impinge on the transcriptional program of the cell, leading to the change of cell phenotype without alteration of genotype. Accumulating evidence suggests that epigenetic mechanisms play important roles in inducing EMT and orchestrating the heredity and reversibility of EMT. In this review, we discuss how DNA methylation, histone modifications, and microRNAs (miRNAs) act in a concerted manner to regulate EMT. 'Epigenetic therapies'-inhibitors of DNA methyltransferases and histone deacetylases as well as microRNAs are emerging as promising agents for cancer intervention.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Metilación de ADN , Epigénesis Genética , Histonas/genética , Humanos , MicroARNs/genética , Transducción de Señal
11.
J Biol Chem ; 288(27): 19633-42, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23720754

RESUMEN

SET8 (SET domain containing 8) is a histone H4 lysine 20 (H4K20)-specific monomethyltransferase in higher eukaryotes that exerts diverse functions in transcription regulation, DNA repair, tumor metastasis, and genome integrity. The activity of SET8 is tightly controlled during cell cycle through post-translational modifications, including ubiquitination, phosphorylation, and sumoylation. However, how the expression of SET8 is regulated is not fully understood. Here, we report that microRNA-7 is a negative regulator of SET8. We demonstrated that microRNA-7 inhibits H4K20 monomethylation and suppresses epithelial-mesenchymal transition and the invasive potential of breast cancer cells. We showed that microRNA-7 promotes spontaneous DNA damages and sensitizes cells to induced DNA damages. Our experiments provide a molecular mechanism for the regulation of SET8 and extend the biological function of microRNA-7 to DNA damage response, supporting the pursuit of microRNA-7 as a potential target for breast cancer intervention.


Asunto(s)
Neoplasias de la Mama/metabolismo , Daño del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , MicroARNs/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , ARN Neoplásico/genética
12.
J Biol Chem ; 286(6): 4226-35, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21127074

RESUMEN

The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Here, we report that the substrate recognition by JFK requires phosphorylation of p53 in its central core region by CSN (COP9 signalosome)-associated kinase. Significantly, inhibition of CSN-associated kinase activity or knockdown of CSN5 impairs JFK-promoted p53 degradation, enhances p53-dependent transcription, and promotes cell growth suppression, G(1) arrest, and apoptosis. Moreover, we showed that JFK is transcriptionally regulated by p53 and forms an auto-regulatory negative feedback loop with p53. These data may shed new light on the functional connection between CSN, Skp1-Cul1-F-box ubiquitin ligase, and p53 and provide a molecular mechanism for the regulation of JFK-promoted p53 degradation.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/fisiología , Apoptosis/fisiología , Complejo del Señalosoma COP9 , Línea Celular Tumoral , Proteínas F-Box/genética , Fase G1/fisiología , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Fosforilación/fisiología , Estabilidad Proteica , Proteínas Ligasas SKP Cullina F-box/genética , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...