Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Injury ; 53(11): 3596-3604, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36163203

RESUMEN

INTRODUCTION: Traumatic brain injuries (TBI) represent a significant percentage of critical injuries in military conflicts. Following injury, wounded warfighters are often subjected to multiple aeromedical evacuations (AE) and associated hypobaria, yet the impact in TBI patients remains to be characterized. This study evaluated the impact of two consecutive simulated AEs in a fluid-percussion TBI model in swine to characterize these effects. METHODS: Following instrumentation, anesthetized Yorkshire swine underwent a frontal TBI via fluid-percussion. A hypobaric chamber was then used to simulate AE at simulated cabin pressure equivalent to 8000ft (hypobaria) in a 6 h initial flight on day 3, followed by a 9 h flight on day 6, and were monitored for 14 days. Animals in the normobaria group were subjected to the same steps at sea level while Sham animals in both groups were instrumented but not injured. Parameters measured included physiologic response, intracranial pressure (ICP), hematology, chemistry, and serum cytokines. Histopathology of brain, lung, intestine, and kidney was performed, as well as fluorojade staining to evaluate neurodegeneration. All animals were divided into sub-groups by block randomization utilizing a 2-way ANOVA to analyze independent variables. RESULTS: Survival was 100% in all groups. Physiologic parameters were largely similar across groups as well during both 6 and 9 h AE. Animals exposed to hypobaria in both the TBI and Sham groups had elevated heart rate (HR) during the 6 h flight (p<0.05). Three animals in the TBI hypo group demonstrated leukocytosis with histologic evidence of meningeal inflammatory response. Expression of serum cytokines was low across all groups. No significant neuronal degeneration was identified in areas away from the site of injury. CONCLUSION: Aeromedical evacuation in swine was not associated with significant differences in physiologic measures, cytokine expression or levels of neuronal degeneration. Histological examination revealed higher risk of meningeal inflammatory response and leucocytosis in swine exposed to hypobaria.


Asunto(s)
Ambulancias Aéreas , Lesiones Traumáticas del Encéfalo , Animales , Citocinas , Modelos Animales de Enfermedad , Presión Intracraneal , Porcinos
2.
Mil Med ; 185(Suppl 1): 57-66, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32074309

RESUMEN

INTRODUCTION: Rapid aeromedical evacuation (AE) is standard of care in current conflicts. However, not much is known about possible effects of hypobaric conditions. We investigated possible effects of hypobaria on organ damage in a swine model of acute lung injury. METHODS: Lung injury was induced in anesthetized swine via intravenous oleic acid infusion. After a stabilization phase, animals were subjected to a 4 hour simulated AE at 8000 feet (HYPO). Control animals were kept at normobaria. After euthanasia and necropsy, organ damage was assessed by combined scores for hemorrhage, inflammation, edema, necrosis, and microatelectasis. RESULTS: Hemodynamic, neurological, or hematologic measurements were similar prior to transport. Hemodynamic instability became apparent during the last 2 hours of transport in the HYPO group. Histological injury scores in the HYPO group were higher for all organs (lung, kidney, liver, pancreas, and adrenal glands) except the brain, with the largest difference in the lungs (P < 0.001). CONCLUSIONS: Swine with mild acute lung injury subjected to a 4 hour simulated AE showed more injury to most organs and, in particular, to the lungs compared with ground transport. This may exacerbate otherwise subclinical pathology and, eventually, manifest as abnormalities in gas exchange or possibly end-organ function.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Insuficiencia Multiorgánica/patología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Medicina Aeroespacial/métodos , Animales , Modelos Animales de Enfermedad , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/fisiopatología , Ácido Oléico/efectos adversos , Ácido Oléico/farmacología , Porcinos/lesiones , Porcinos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...