Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 353: 141650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462183

RESUMEN

Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 µm and 40-48 µm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.


Asunto(s)
Incrustaciones Biológicas , Microbiota , Purificación del Agua , Aguas Residuales , Microplásticos , Plásticos , Cationes Bivalentes , Membranas Artificiales , Filtración/métodos , Purificación del Agua/métodos
2.
Sci Total Environ ; 904: 166778, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660828

RESUMEN

This study investigated the technical, environmental, and economic feasibility of using recycled construction material (concrete) as substrate in constructed wetlands for cold climate decentralized domestic wastewater treatment. The wastewater treatment efficiency was examined, and life cycle assessment (LCA) and cost benefit analysis were performed. The technical feasibility was assessed in lab-scale two-stage wetland systems with recycled concrete or lava stone as substrates, which were operated at 22 °C and 5 °C with local wild plants and vegetables. The wetlands removed ∼85 % and ∼51 % of organics and ∼67 % and ∼34 % TN at 22 °C and 5 °C, respectively; no significant difference was found between concrete and lava stone. The heavy metal contents in the cultivated vegetables met WHO standards for human consumption, showing the feasibility of nutrient recovery from the treated wastewater. A comparative LCA of septic tank standalone, septic tank + constructed wetland (with recycled concrete), and gravity-driven ceramic membrane (GDCM) system was performed. This aims to illustrate the benefits of intensifying the existing treatment process (i.e., septic tank) with the constructed wetland, with an alternative membrane-based treatment technique as benchmark. The LCA results revealed that using waste materials as the substrate in constructed wetlands could reduce the environmental impact of wetlands. Installation of the wetland as posttreatment of the septic tank (1) could reduce ∼50 % of eutrophication potential without increasing global warming impact compared to the septic tank alone; (2) had ∼90 % higher global warming impact and ∼40 % lower eutrophication impact compared to GDCM. Economic analysis revealed that the total cost of septic tank + constructed wetland (0.143 €/m3) was comparable to the septic tank alone (merely 3.5 % difference), and 49 % lower than that of GDCM (with recycled membranes). Therefore, the septic tank + constructed wetland scenario could be favorable for sensitive areas with eutrophication potential regarding its technical, economical, and environmental feasibility.

3.
Sci Total Environ ; 833: 155248, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427614

RESUMEN

In this study, two lava stone biocarrier facilitated gravity-driven membrane (GDM) reactors were operated at ~8 °C and ~22 °C in parallel for treating primary wastewater effluent. Although the biocarrier reactor at 8 °C displayed less efficient removals of biodegradable organics than that at 22 °C, both GDM systems (without cleaning) showed comparable fouling resistance distribution patterns, accompanying with similar cake filtration constants and pore constriction constants by modelling simulation. Compared to the GDM at 8 °C, more foulants were accumulated on the GDM at 22 °C, but they presented similar soluble organics/inorganics contents and specific cake resistances. This indicated the cake layers at 22 °C may contain greater-sized foulants due to proliferation of both prokaryotes and eukaryotes, leading to a relatively less-porous nature. In the presence of periodic cleaning (at 50 °C), the cleaning effectiveness followed a sequence as ultrasonication-enhanced physical cleaning > two-phase flow cleaning > chemical-enhanced physical cleaning > physical cleaning, regardless of GDM operation temperature. However, significantly higher cake resistances were observed in the GDM system at 22 °C than those at 8 °C, because shear force tended to remove loosely-attached foulant layers and may compress the residual dense cake layer. The presence of periodic cleaning led to dissimilar dominant prokaryotic and eukaryotic communities in the cake layers as those without cleaning and in the lava stone biocarriers. Nevertheless, operation temperature did not influence GDM permeate quality, which met EU discharge standards.


Asunto(s)
Aguas Residuales , Purificación del Agua , Reactores Biológicos , Clima Frío , Eucariontes , Filtración , Membranas Artificiales , Temperatura
4.
Sci Total Environ ; 779: 146545, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-33752021

RESUMEN

Emerging pollutants (such as micropollutants, microplastics) and pathogens present in wastewater are of rising concern because their release can affect the natural environment and drinking water resources. In this decade, with increasing numbers of small-scale decentralized wastewater systems globally, the status of emerging pollutant and pathogen mitigation in the decentralized wastewater treatment processes has received more attention. This state-of-the-art review aims to discuss the mitigation efficiencies and mechanisms of micropollutants, microplastics, and pathogens in single-stage and hybrid decentralized wastewater treatment processes. The reviewed results revealed that hybrid wastewater treatment facilities could display better performance compared to stand-alone facilities. This is because the multiple treatment steps could offer various microenvironments, allowing incorporating several mitigation mechanisms (such as sorption, degradation, filtration, etc.) to remove complicated emerging pollutants and pathogens. The factors (such as system operation conditions, environmental conditions, wastewater matrix) influencing the removals of emerging pollutants from wastewater in these systems have been further identified. Nevertheless, it was found that very limited research work focused on synergised or conflicted effects of operation conditions on various emerging pollutants naturally present in the wastewater. Meanwhile, effective, reliable, and rapid analysis of the emerging pollutants and pathogens in the complicated wastewater matrix is still a major challenge.

5.
Sci Total Environ ; 710: 136375, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31923693

RESUMEN

Direct membrane filtration has shown great potential in wastewater treatment and resource recovery in terms of its superior treated water quality, efficient nutrient recovery, and sustainable operation, especially under some scenarios where biological treatment is not feasible. This paper aims to give a comprehensive review of the state-of-the-art of direct membrane filtration processes (including pressure-driven, osmotic-driven, thermal-driven, and electrical-driven) in treating different types of wastewater for water reclamation and resource recovery. The factors influencing membrane performance and treatment efficiency in these direct membrane filtration processes are well illustrated, in which membrane fouling was identified as the main challenge. The strategies for improving direct membrane filtration performance, such as physical and chemical cleaning techniques and pretreatment of feed water, are highlighted. Towards scaling-up and long-term operation of direct membrane filtration for effective wastewater reclamation and resource recovery, the challenges are emphasized and the prospects are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA