Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124954, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39180970

RESUMEN

We investigated the anharmonicity and intermolecular interactions of N-methylformamide (NMF) and di-N,N-methylformamide (DMF) in the neat liquid phase with particular interest in the amide bands. The vibrational spectra, complex refractive index, and complex electric permittivity were determined in in the mid- (MIR) and near-infrared (NIR) regions (11,500-560 cm-1; 870-17857 nm). Dispersion analysis was based on the Classical Damped Harmonic Oscillator (CDHO) and simultaneous modelling of the real and imaginary components of the spectra. This data delivered insights into the vibrational energy dissipation and self-association in liquid amides. Identification of the MIR and NIR bands was based on anharmonic GVPT2//B3LYP/6-311++G(d,p) calculations. DMF and NMF follow distinct self-association, evidenced in the MIR fingerprint by the two components of the νCO, the analog of the Amide I band. These conclusions are supported by the structural information derived from the NIR spectra. Furthermore, the contribution of overtones and combination bands in the MIR spectra of amides was examined. The conclusions on molecular interactions and structural dynamics of NMF and DMF contribute to a deeper understanding of the effects of changes in the local environment of the amide group.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124851, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084017

RESUMEN

Here, we present the first examination of the state of water under a soft confinement in eight aliphatic alcohols including cyclopentanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-decanol, 2-octanol and 3-octanol. Due to relatively large size of the aliphatic part, water has limited solubility in all studied alcohols. Water content in saturated solutions was determined by Karl Fischer titration and correlated with the spectroscopic data. This way, we determined the molar absorptivity of the ν2+ν3 combination mode. The effect of addition of water and temperature variation was monitored by ATR-IR and NIR spectroscopy. Analysis of the experimental results was guided by DFT calculations, which provided the structures, harmonic MIR spectra and binding energies of selected alcohol-water complexes. Our studies demonstrated that the state of water in alcohols is related to its solubility, which depends on structure of solvent molecules. The solubility of water in 1-alcohols decreases on increasing of the chain length, but for long chain alcohols this effect is less evident. More apparent solubility reduction appears in going from the primary to secondary alcohols. The effective shielding of the OH group in the linear alcohols is achieved when on both sides of the OH group are ethyl or longer substituents, while the shielding by methyl groups is less efficient. Water is much better soluble in the cyclic alcohols as compared with the linear ones due to better accessibility of the OH group. The soft confinement of water in aliphatic alcohols allows for flexible structural arrangements and interactions. Even at low water content, we did not observe free molecules of water. At these conditions, the molecules of water are singly or doubly bonded to the OH groups from the alcohol. Increasing solubility of water reduces the number of the free OH groups and leads to formation of water clusters. Obtained results allow concluding that in alcohols with sizable aliphatic part the molecules of water are confined in the vicinity of the OH groups.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124384, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701576

RESUMEN

The bioactive compounds Acetyl-11-keto-ß-boswellic acid (AKBA) and 11-keto-ß-boswellic acid (KBA), found in the resin of the Boswellia tree, exhibit anti-inflammatory properties, rendering Boswellia resin an intriguing natural medicinal products. However, the content of boswellic acids varies across different Boswellia species and proper knowledge of its species-dependent nature, as well as alternatives to the resource- and time-intensive HPLC analysis, are lacking. Here we present a comprehensive investigation into the boswellic acid content of seven Boswellia species from ten countries and introduce a novel and non-destructive Near-Infrared spectroscopy method for predicting boswellic acid concentrations in solid resin samples. The HPLC-UV reference analysis revealed AKBA concentrations of up to 7.27 % (w/w) with KBA concentrations reaching up to 1.28 % (w/w). Principal Component Analysis of the HPLC and NIR spectroscopy data unveiled species-specific variations, facilitating differentiation based on boswellic acid content, characteristic chromatograms and NIR spectra. Using the HPLC-UV quantification as reference, we developed a Partial Least Squares regression model based on NIR spectra of the resin samples. This model demonstrated highly satisfactory predictive capabilities for AKBA content, achieving a root mean square error of prediction of 0.74 % (w/w) and an R2val of 0.79 in independent test set validation. Although the model was less effective for predicting KBA content, it still offered valuable estimates. The spectroscopic method introduced in this study provides a cost-effective and solvent-free approach for predicting boswellic acid content, demonstrating the potential for application in non-laboratory settings through the use of miniaturized NIR spectrometers. Consequently, this method aligns well with the principles of green chemistry and addresses the growing demand for alternative analytical techniques.


Asunto(s)
Boswellia , Análisis de Componente Principal , Resinas de Plantas , Espectroscopía Infrarroja Corta , Triterpenos , Boswellia/química , Espectroscopía Infrarroja Corta/métodos , Triterpenos/análisis , Cromatografía Líquida de Alta Presión/métodos , Resinas de Plantas/química , Resinas de Plantas/análisis , Análisis Multivariante , Especificidad de la Especie
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123955, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38306925

RESUMEN

This comprehensive review paper aims to captivate the applicability of in-sorbent detection, where near-infrared spectroscopy (NIRS) converges with enrichment technologies. For this purpose, we collected and summarized information regarding the combination of several sophisticated analytical enrichment techniques with NIRS to further explore and develop this synergistic approach. Peer-reviewed publications, matching the criteria of in situ NIR measurements prior analyte elution, have been collected, investigated, and concluded within this review. Investigations according to used materials, commercial or self-made, composition, organic or inorganic and applied analytical methodologies have been carried out. Applications extending over a multitude of chemical fields, from environmental to medicinal applications. As this review concludes, the combination of these techniques further expands the applicability of NIRS and moreover tries to solve the long-standing issue of the comparably low sensitivity regarding this vibrational technique.

5.
Phys Chem Chem Phys ; 26(8): 7190-7202, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349743

RESUMEN

Light-triggered molecular switches are extensively researched for their applications in medicine, chemistry and material science and, if combined, particularly for their use in multifunctional smart materials, for which orthogonally, i.e. individually, addressable photoswitches are needed. In such a multifunctional mixture, the switching properties, efficiencies and the overall performance may be impaired by undesired mutual dependences of the photoswitches on each other. Within this study, we compare the performance of the pure photoswitches, namely an azobenzene derivative (Azo) and a donor-acceptor Stenhouse adduct (DASA), with the switching properties of their mixture using time-resolved temperature-dependent UV/VIS absorption spectroscopy, time-resolved IR absorption spectroscopy at room temperature and quantum mechanical calculations to determine effective cross sections, switching kinetics as well as activation energies of thermally induced steps. We find slightly improved effective cross sections, percentages of switched molecules and no increased activation barriers of the equimolar mixture compared to the single compounds. Thus, the studied mixture Azo + DASA is very promising for future applications in multifunctional smart materials.

6.
Heliyon ; 10(4): e25844, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375262

RESUMEN

In forensic medicine, estimating human skeletal remains' post-mortem interval (PMI) can be challenging. Following death, bones undergo a series of chemical and physical transformations due to their interactions with the surrounding environment. Post-mortem changes have been assessed using various methods, but estimating the PMI of skeletal remains could still be improved. We propose a new methodology with handheld hyperspectral imaging (HSI) system based on the first results from 104 human skeletal remains with PMIs ranging between 1 day and 2000 years. To differentiate between forensic and archaeological bone material, the Convolutional Neural Network analyzed 65.000 distinct diagnostic spectra: the classification accuracy was 0.58, 0.62, 0.73, 0.81, and 0.98 for PMIs of 0 week-2 weeks, 2 weeks-6 months, 6 months-1 year, 1 year-10 years, and >100 years, respectively. In conclusion, HSI can be used in forensic medicine to distinguish bone materials >100 years old from those <10 years old with an accuracy of 98%. The model has adequate predictive performance, and handheld HSI could serve as a novel approach to objectively and accurately determine the PMI of human skeletal remains.

7.
Curr Res Food Sci ; 8: 100675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292344

RESUMEN

Iberian ham is a highly appreciated product and according to Spanish legislation different labels identify different products depending on the genetic purity. Consequently, "100% Iberian" ham from purebred Iberian animals is more expensive than "Iberian" ham from Iberian x Duroc crosses. The hypothesis of this study was that to avoid labelling fraud it is possible to distinguish the breed (Iberian or Iberian x Duroc) of acorn-fed pigs of Iberian ham without any prior preparation of the sample by using spectroscopy that is a rapid and reliable technology. Moreover, portable devices which can be used in situ could provide similar results to those of benchtop equipment. Therefore, the spectra of the 60 samples (24 samples of 100% Iberian ham and 36 samples of Iberian x Duroc crossbreed ham) were recorded only for the fat, only for the muscle, or for the whole slice with two benchtop near-infrared (NIR) spectrometers (Büchi NIRFlex N-500 and Foss NIRSystem 5000) and five portable spectrometers including four portable NIR devices (VIAVI MicroNIR 1700 ES, TellSpec Enterprise Sensor, Thermo Fischer Scientific microPHAZIR, and Consumer Physics SCiO Sensor), and one RAMAN device (BRAVO handheld). The results showed that, in general, the whole slice recording produced the best results for classification purposes. The SCiO device showed the highest percentages of correctly classified samples (97% in calibration and 92% in validation) followed by TellSpec (100% and 81%). The SCiO sensor also showed the highest percentages of success when the analyses were performed only on lean meat (97% in calibration and 83% in validation) followed by microPHAZIR (84% and 81%), while in the case of the fat tissue. Raman technology showed the best discrimination capacity (96% and 78%) followed by microPHAZIR (89% and 81%). Therefore, spectroscopy has proved to be a suitable technology for discriminating ham samples according to breed purity; portable devices have been shown to give even better results than benchtop spectrometers.

8.
Transplantation ; 108(2): 506-515, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37592397

RESUMEN

BACKGROUND: Biliary complications (BCs) negatively impact the outcome after liver transplantation. We herein tested whether hyperspectral imaging (HSI) generated data from bile ducts (BD) on reperfusion and machine learning techniques for data readout may serve as a novel approach for predicting BC. METHODS: Tissue-specific data from 136 HSI liver images were integrated into a convolutional neural network (CNN). Fourteen patients undergoing liver transplantation after normothermic machine preservation served as a validation cohort. Assessment of oxygen saturation, organ hemoglobin, and tissue water levels through HSI was performed after completing the biliary anastomosis. Resected BD segments were analyzed by immunohistochemistry and real-time confocal microscopy. RESULTS: Immunohistochemistry and real-time confocal microscopy revealed mild (grade I: 1%-40%) BD damage in 8 patients and moderate (grade II: 40%-80%) injury in 1 patient. Donor and recipient data alone had no predictive capacity toward BC. Deep learning-based analysis of HSI data resulted in >90% accuracy of automated detection of BD. The CNN-based analysis yielded a correct classification in 72% and 69% for BC/no BC. The combination of HSI with donor and recipient factors showed 94% accuracy in predicting BC. CONCLUSIONS: Deep learning-based modeling using CNN of HSI-based tissue property data represents a noninvasive technique for predicting postoperative BC.


Asunto(s)
Trasplante de Hígado , Humanos , Trasplante de Hígado/efectos adversos , Trasplante de Hígado/métodos , Imágenes Hiperespectrales , Redes Neurales de la Computación , Conductos Biliares/cirugía , Hígado/diagnóstico por imagen , Hígado/cirugía
9.
Bioengineering (Basel) ; 10(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37760120

RESUMEN

Bone analyses using mid-infrared spectroscopy are gaining popularity, especially with handheld spectrometers that enable on-site testing as long as the data quality meets standards. In order to diagnose Staphylococcus epidermidis in human bone grafts, this study was carried out to compare the effectiveness of the Agilent 4300 Handheld Fourier-transform infrared with the Perkin Elmer Spectrum 100 attenuated-total-reflectance infrared spectroscopy benchtop instrument. The study analyzed 40 non-infected and 10 infected human bone samples with Staphylococcus epidermidis, collecting reflectance data between 650 cm-1 and 4000 cm-1, with a spectral resolution of 2 cm-1 (Agilent 4300 Handheld) and 0.5 cm-1 (Perkin Elmer Spectrum 100). The acquired spectral information was used for spectral and unsupervised classification, such as a principal component analysis. Both methods yielded significant results when using the recommended settings and data analysis strategies, detecting a loss in bone quality due to the infection. MIR spectroscopy provides a valuable diagnostic tool when there is a tissue shortage and time is of the essence. However, it is essential to conduct further research with larger sample sizes to verify its pros and cons thoroughly.

10.
J Biophotonics ; 16(10): e202300189, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37494000

RESUMEN

Estimating postmortem intervals (PMI) is crucial in forensic investigations, providing insights into criminal cases and determining the time of death. PMI estimation relies on expert experience and a combination of thanatological data and environmental factors but is prone to errors. The lack of reliable methods for assessing PMI in bones and soft tissues necessitates a better understanding of bone decomposition. Several research groups have shown promise in PMI estimation in skeletal remains but lack valid data for forensic cases. Current methods are costly, time-consuming, and unreliable for PMIs over 5 years. Raman spectroscopy (RS) can potentially estimate PMI by studying chemical modifications in bones and teeth correlated with burial time. This review summarizes RS applications, highlighting its potential as an innovative, nondestructive, and fast technique for PMI estimation in forensic medicine.


Asunto(s)
Restos Mortales , Cambios Post Mortem , Humanos , Espectrometría Raman , Huesos , Entierro
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123057, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37451212

RESUMEN

This work provides new insight into the state of water in a series of aliphatic ketones. For our studies, we selected nine aliphatic ketones of different size and structure to examine the effect of various structural motifs on behavior of water in the mixtures. Our results reveal that conformational flexibility of aliphatic chains in the linear ketones allows for effective shielding of the carbonyl group, and this flexibility is the main reason for poor solubility of water. Hence, in the linear ketones molecules of water are involved mostly in ketone-water interactions, while the water-water interactions are rare. Higher solubility of water in the cyclic ketones allows for creation of clusters of water, where the molecules are in water-like environment. The temperature rise in wet cyclic ketones increases population of ketone-water interactions at the expense of the water-water ones, while in the linear ketones and 2,6-dimethylcyclohexanone at an elevated temperature there is an increase in the population of singly bonded water at the expense of the doubly bonded one. DFT calculations reveal that the substitution of cyclohexanone by a single methyl group does not affect the strength of the ketone-water interactions, while it has a significant impact on the solubility of water in the ketone. The most important conclusion from this study is that the accessibility of the carbonyl group is the most important factor determining the intermolecular interactions and solubility of water in aliphatic ketones.

12.
Anal Methods ; 15(20): 2448-2455, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37158281

RESUMEN

E-liquids have become increasingly popular in society in recent years. A wide variety of flavors and nicotine strengths make it possible for every user to get a product according to their wishes. Many of these e-liquids are marketed with countless different flavors, which are often characterized by a strong and sweet smell. Sweeteners, such as sucralose, are therefore commonly added as sugar substitutes. However, recent studies have shown the potential formation of highly toxic chlorinated compounds. This can be explained by the high temperatures (above 120 °C) within the heating coils and the used basic composition of these liquids. Nevertheless, the legal situation is composed of proposals without clear restrictions, only recommendations for tobacco products. For this reason, a high level of interest lies within the establishment of fast, reliable and cost-effective methods for the detection of sucralose in e-liquids. In this study, a number of 100 commercially available e-liquids was screened for sucralose in order to identify the suitability of ambient mass spectrometry and near-infrared spectroscopy for this application. A highly sensitive high-performance liquid chromatography coupled to a tandem mass spectrometer method was used as reference method. Furthermore, the advantages and limitations of the two mentioned methods are highlighted in order to provide a reliable quantification of sucralose. The results clearly revile the necessity for product quality due to the absence of declaration on many of the used products. Further on, it could be shown, that both methods are suitable for the quantification of sucralose in e-liquids, with beneficial economic and ecological aspects, over classical analytical tools including high-performance liquid chromatography. Clear correlations between the reference and novel developed methods are displayed. In summary, these methods enable an important contribution to ensure consumer protection and elimination of confuse package labelling.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Espectroscopía Infrarroja Corta , Sacarosa/análisis , Edulcorantes/análisis , Espectrometría de Masas
13.
Foods ; 12(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37238763

RESUMEN

Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world's most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas.

15.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203710

RESUMEN

Osteomyelitis is a bone disease caused by bacteria that can damage bone. Raman handheld spectroscopy has emerged as a promising diagnostic tool for detecting bone infection and can be used intraoperatively during surgical procedures. This study involved 120 bone samples from 40 patients, with 80 samples infected with either Staphylococcus aureus or Staphylococcus epidermidis. Raman handheld spectroscopy demonstrated successful differentiation between healthy and infected bone samples and between the two types of bacterial pathogens. Raman handheld spectroscopy appears to be a promising diagnostic tool in bone infection and holds the potential to overcome many of the shortcomings of traditional diagnostic procedures. Further research, however, is required to confirm its diagnostic capabilities and consider other factors, such as the limit of pathogen detection and optimal calibration standards.


Asunto(s)
Enfermedades Óseas , Osteomielitis , Humanos , Osteomielitis/diagnóstico , Calibración , Estado de Salud , Espectrometría Raman
16.
Molecules ; 27(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144616

RESUMEN

The interaction of water with polymers is an intensively studied topic. Vibrational spectroscopy techniques, mid-infrared (MIR) and Raman, were often used to investigate the properties of water-polymer systems. On the other hand, relatively little attention has been given to the potential of using near-infrared (NIR) spectroscopy (12,500-4000 cm-1; 800-2500 nm) for exploring this problem. NIR spectroscopy delivers exclusive opportunities for the investigation of molecular structure and interactions. This technique derives information from overtones and combination bands, which provide unique insights into molecular interactions. It is also very well suited for the investigation of aqueous systems, as both the bands of water and the polymer can be reliably acquired in a range of concentrations in a more straightforward manner than it is possible with MIR spectroscopy. In this study, we applied NIR spectroscopy to investigate interactions of water with polymers of varying hydrophobicity: polytetrafluoroethylene (PTFE), polypropylene (PP), polystyrene (PS), polyvinylchloride (PVC), polyoxymethylene (POM), polyamide 6 (PA), lignin (Lig), chitin (Chi) and cellulose (Cell). Polymer-water mixtures in the concentration range of water between 1-10%(w/w) were investigated. Spectra analysis and interpretation were performed with the use of difference spectroscopy, Principal Component Analysis (PCA), Median Linkage Clustering (MLC), Partial Least Squares Regression (PLSR), Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) and Two-Dimensional Correlation Spectroscopy (2D-COS). Additionally, from the obtained data, aquagrams were constructed and interpreted with aid of the conclusions drawn from the conventional approaches. We deepened insights into the problem of water bands obscuring compound-specific signals in the NIR spectrum, which is often a limiting factor in analytical applications. The study unveiled clearly visible trends in NIR spectra associated with the chemical nature of the polymer and its increasing hydrophilicity. We demonstrated that changes in the NIR spectrum of water are manifested even in the case of interaction with highly hydrophobic polymers (e.g., PTFE). Furthermore, the unveiled spectral patterns of water in the presence of different polymers were found to be dissimilar between the two major water bands in NIR spectrum (νs + νas and νas + δ).


Asunto(s)
Lignina , Agua , Celulosa , Quitina , Polímeros , Polipropilenos , Poliestirenos , Politetrafluoroetileno , Cloruro de Polivinilo , Espectroscopía Infrarroja Corta/métodos , Agua/química
17.
Biology (Basel) ; 11(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-36101401

RESUMEN

Estimating the post-mortem interval (PMI) of human skeletal remains is a critical issue of forensic analysis, with important limitations such as sample preparation and practicability. In this work, NIR spectroscopy (NIRONE® Sensor X; Spectral Engines, 61449, Germany) was applied to estimate the PMI of 104 human bone samples between 1 day and 2000 years. Reflectance data were repeatedly collected from eight independent spectrometers between 1950 and 1550 nm with a spectral resolution of 14 nm and a step size of 2 nm, each from the external and internal bone. An Artificial Neural Network was used to analyze the 66,560 distinct diagnostic spectra, and clearly distinguished between forensic and archaeological bone material: the classification accuracies for PMIs of 0−2 weeks, 2 weeks−6 months, 6 months−1 year, 1 year−10 years, and >100 years were 0.90, 0.94, 0.94, 0.93, and 1.00, respectively. PMI of archaeological bones could be determined with an accuracy of 100%, demonstrating the adequate predictive performance of the model. Applying a handheld NIR spectrometer to estimate the PMI of human skeletal remains is rapid and extends the repertoire of forensic analyses as a distinct, novel approach.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35849651

RESUMEN

Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.

19.
Chem Sci ; 13(26): 7880-7885, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35865884

RESUMEN

We report the electron-beam induced crosslinking of cinnamate-substituted polythiophene proceeding via excited state [2+2]-cycloaddition. Network formation in thin films is evidenced by infrared spectroscopy and film retention experiments. For the polymer studied herin, the electron-stimulated process appears to be superior to photo (UV)-induced crosslinking as it leads to less degradation. Electron beam lithography (EBL) patterns cinnamate-substituted polythiophene thin films on the nanoscale with a resolution of around 100 nm. As a proof of concept, we fabricated nanoscale organic transistors using doped and cross-linked P3ZT as contact fingers in thin film transistors.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121438, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35667136

RESUMEN

Quantum mechanical calculations are routinely used as a major support in mid-infrared (MIR) and Raman spectroscopy. In contrast, practical limitations for long time formed a barrier to developing a similar synergy between near-infrared (NIR) spectroscopy and computational chemistry. Recent advances in theoretical methods suitable for calculation of NIR spectra opened the pathway to modeling NIR spectra of various molecules. Accurate theoretical reproduction of NIR spectra of molecules reaching the size of long-chain fatty acids was accomplished so far. In silico NIR spectroscopy, where the spectra are calculated ab initio, provides substantial improvement in our understanding of the overtones and combination bands that overlap in staggering numbers and create complex lineshape typical for NIR spectra. This improves the comprehension of the spectral information enabling access to rich and detail molecular footprint, essential for fundamental research and useful in routine analysis by NIR spectroscopy and chemometrics. This review article summarizes the most recent accomplishments in the emerging field with examples of simulated NIR spectra of molecules reaching long-chain fatty acids and polymers. In addition to detailed NIR band assignments and new physical insights, simulated spectra enable innovative support in applications. Understanding of the difference in the performance observed between miniaturized NIR spectrometers and chemical interpretation of the chemometric models are noteworthy here. These new elements integrated into NIR spectroscopy framework enable a knowledge-based design of the analysis with comprehension of the processed chemical information.


Asunto(s)
Espectroscopía Infrarroja Corta , Espectrometría Raman , Calibración , Ácidos Grasos , Espectroscopía Infrarroja Corta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...