Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826269

RESUMEN

Fluctuations in global arousal are key determinants of spontaneous cortical activity and function. Several subcortical structures, including neuromodulator nuclei like the locus coeruleus (LC), are involved in the regulation of arousal. However, much less is known about the role of cortical circuits that provide top-down inputs to arousal-related subcortical structures. Here, we investigated the role of a major subdivision of the prefrontal cortex, the anterior cingulate cortex (ACC), in arousal modulation. Pupil size, facial movements, heart rate, and locomotion were used as non-invasive measures of arousal and behavioral state. We designed a closed loop optogenetic system based on machine vision and found that real time inhibition of ACC activity during pupil dilations suppresses ongoing arousal events. In contrast, inhibiting activity in a control cortical region had no effect on arousal. Fiber photometry recordings showed that ACC activity scales with the magnitude of spontaneously occurring pupil dilations/face movements independently of locomotion. Moreover, optogenetic ACC activation increases arousal independently of locomotion. In addition to modulating global arousal, ACC responses to salient sensory stimuli scaled with the size of evoked pupil dilations. Consistent with a role in sustaining saliency-linked arousal events, pupil responses to sensory stimuli were suppressed with ACC inactivation. Finally, our results comparing arousal-related ACC and norepinephrinergic LC neuron activity support a role for the LC in initiation of arousal events which are modulated in real time by the ACC. Collectively, our experiments identify the ACC as a key cortical site for sustaining momentary increases in arousal and provide the foundation for understanding cortical-subcortical dynamics underlying the modulation of arousal states.

2.
JCI Insight ; 9(11)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713518

RESUMEN

Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage-associated molecular pattern signaling. In mechanistic experiments, we showed that factors released from dying neurons signaled through receptor for advanced glycation endproducts to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.


Asunto(s)
Astrocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal , Astrocitos/metabolismo , Astrocitos/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Ratones , Humanos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Masculino , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Muerte Celular , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
3.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617230

RESUMEN

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source of striatal network modulation. However, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Unilateral dopamine depletion reduced locomotion-related astrocyte responses. Chemogenetic activation facilitated astrocyte activity, and improved asymmetrical motor deficits and open field exploratory behavior in dopamine lesioned mice. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.

4.
Neuropharmacology ; 245: 109800, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056524

RESUMEN

The prefrontal cortex (PFC) is a hub for cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Recent advances in genetically encoded sensors and functional microscopy allow multimodal in vivo PFC activity recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they typically require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking exerted temporally heterogeneous effects on PFC activity at single neuron and population levels. Intoxication modulated the tonic activity of some neurons while others showed phasic responses around ethanol receipt. Population level activity did not show tonic or phasic modulation but tracked ethanol consumption over the minute-timescale. Network level interactions assessed through between-neuron pairwise correlations were largely resilient to intoxication at the population level while neurons with increased tonic activity showed higher synchrony by the end of the drinking period. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".


Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Ratones , Humanos , Masculino , Femenino , Animales , Calcio , Etanol/farmacología , Corteza Prefrontal , Neuronas , Ratones Endogámicos C57BL , Consumo de Bebidas Alcohólicas/psicología
5.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546744

RESUMEN

Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3 signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the MPTP model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of DAMP signaling. Using human cell culture systems, we show that factors released from dying neurons signal through RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.

6.
bioRxiv ; 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503061

RESUMEN

The prefrontal cortex (PFC) is a hub for higher-level cognitive behaviors and is a key target for neuroadaptations in alcohol use disorders. Preclinical models of ethanol consumption are instrumental for understanding how acute and repeated drinking affects PFC structure and function. Recent advances in genetically encoded sensors of neuronal activity and neuromodulator release combined with functional microscopy (multiphoton and one-photon widefield imaging) allow multimodal in-vivo PFC recordings at subcellular and cellular scales. While these methods could enable a deeper understanding of the relationship between alcohol and PFC function/dysfunction, they require animals to be head-fixed. Here, we present a method in mice for binge-like ethanol consumption during head-fixation. Male and female mice were first acclimated to ethanol by providing home cage access to 20% ethanol (v/v) for 4 or 8 days. After home cage drinking, mice consumed ethanol from a lick spout during head-fixation. We used two-photon calcium imaging during the head-fixed drinking paradigm to record from a large population of PFC neurons (>1000) to explore how acute ethanol affects their activity. Drinking modulated activity rates in a subset of neurons on slow (minutes) and fast (seconds) time scales but the majority of neurons were unaffected. Moreover, ethanol intake did not significantly affect network level interactions in the PFC as assessed through inter-neuronal pairwise correlations. By establishing a method for binge-like drinking in head-fixed mice, we lay the groundwork for leveraging advanced microscopy technologies to study alcohol-induced neuroadaptations in PFC and other brain circuits.

7.
Physiol Rev ; 103(1): 347-389, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771984

RESUMEN

Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks. In this review, we discuss the field's evolving understanding of how cortical and subcortical regions in placental mammals interact cooperatively, not only via top-down cortical-subcortical inputs but through bottom-up interactions, especially via the thalamus. We describe our current understanding of the circuitry of both the cortex and two exemplar subcortical structures, the superior colliculus and striatum, to identify which information is prioritized by which regions. We then describe the functional circuits these regions form with one another, and the thalamus, to create parallel loops and complex networks for brainwide information flow. Finally, we challenge the classic view that functional modules are contained within specific brain regions; instead, we propose that certain regions prioritize specific types of information over others, but the subnetworks they form, defined by their anatomical connections and functional dynamics, are the basis of true specialization.


Asunto(s)
Objetivos , Placenta , Animales , Encéfalo/fisiología , Femenino , Humanos , Mamíferos , Embarazo , Tálamo/fisiología
8.
Nat Commun ; 13(1): 1541, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318343

RESUMEN

Learning about positive and negative outcomes of actions is crucial for survival and underpinned by conserved circuits including the striatum. How associations between actions and outcomes are formed is not fully understood, particularly when the outcomes have mixed positive and negative features. We developed a novel foraging ('bandit') task requiring mice to maximize rewards while minimizing punishments. By 2-photon Ca++ imaging, we monitored activity of visually identified anterodorsal striatal striosomal and matrix neurons. We found that action-outcome associations for reward and punishment were encoded in parallel in partially overlapping populations. Single neurons could, for one action, encode outcomes of opposing valence. Striosome compartments consistently exhibited stronger representations of reinforcement outcomes than matrix, especially for high reward or punishment prediction errors. These findings demonstrate multiplexing of action-outcome contingencies by single identified striatal neurons and suggest that striosomal neurons are particularly important in action-outcome learning.


Asunto(s)
Cuerpo Estriado , Recompensa , Animales , Cuerpo Estriado/fisiología , Ratones , Neuronas/fisiología , Castigo , Refuerzo en Psicología
11.
Nat Commun ; 11(1): 6007, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243980

RESUMEN

Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior.


Asunto(s)
Retroalimentación Sensorial/fisiología , Giro del Cíngulo/fisiología , Locomoción/fisiología , Corteza Prefrontal/fisiología , Percepción Visual/fisiología , Animales , Conducta Animal/fisiología , Señales (Psicología) , Femenino , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Optogenética , Estimulación Luminosa/métodos , Técnicas Estereotáxicas , Colículos Superiores/fisiología , Corteza Visual/fisiología
12.
Nat Neurosci ; 23(12): 1456-1468, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839617

RESUMEN

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent. Statistical analyses of these data reveal clusters that often correspond to cell types previously defined by morphological or physiological criteria and that appear conserved across cortical areas and species. To capitalize on these new methods, we propose the adoption of a transcriptome-based taxonomy of cell types for mammalian neocortex. This classification should be hierarchical and use a standardized nomenclature. It should be based on a probabilistic definition of a cell type and incorporate data from different approaches, developmental stages and species. A community-based classification and data aggregation model, such as a knowledge graph, could provide a common foundation for the study of cortical circuits. This community-based classification, nomenclature and data aggregation could serve as an example for cell type atlases in other parts of the body.


Asunto(s)
Células/clasificación , Neocórtex/citología , Transcriptoma , Animales , Biología Computacional , Humanos , Neuroglía/clasificación , Neuronas/clasificación , Análisis de la Célula Individual , Terminología como Asunto
13.
Eur J Neurosci ; 49(8): 1055-1060, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30019473

RESUMEN

Ray Guillery made major contributions to our understanding of the development and function of the brain. One of his principal conceptual insights, developed together with Murray Sherman [S.M. Sherman & R.W. Guillery (2001) Exploring the Thalamus. Elsevier, Amstrerdam; S. Sherman & R. Guillery (2006) Exploring the Thalamus and Its Role in Cortical Functioning. Academic Press, New York, NY; S.M. Sherman & R.W. Guillery (2013) Functional Connections of Cortical Areas: A New View from the Thalamus. MIT Press, Cambridge, MA and then in his last book (R. Guillery (2017) The Brain as a Tool: A Neuroscientist's Account. Oxford University Press, Oxford, UK)], was that the brain is a 'tool' to understand the world. In this view, the brain does not passively process sensory information and use the result to inform motor outputs. Rather, sensory and motor signals are widely broadcast and inextricably linked, with ongoing sensorimotor transformations serving as the basis for interaction with the outside world. Here, we describe recent studies from our laboratory and others which demonstrate this astute framing of the link among sensation, perception, and action postulated by Guillery and others [G. Deco & E.T. Rolls (2005) Prog Neurobiol, 76, 236-256; P. Cisek & J.F. Kalaska (2010) Annu Rev Neurosci, 33, 269-298]. Guillery situated his understanding in the deeply intertwined relationship between the thalamus and cortex, and importantly in the feedback from cortex to thalamus which in turn influences feed-forward drive to cortex [S.M. Sherman & R.W. Guillery (2001) Exploring the Thalamus. Elsevier, Amstrerdam; S. Sherman & R. Guillery (2006) Exploring the Thalamus and Its Role in Cortical Functioning. Academic Press, New York, NY]. We extend these observations to argue that brain mechanisms for sensorimotor transformations involve cortical and subcortical circuits that create internal models as a substrate for action, that a key role of sensory inputs is to update such models, and that a major function of sensorimotor processing underlying cognition is to enable action selection and execution.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Desempeño Psicomotor/fisiología , Animales , Atención/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Vías Nerviosas/fisiología , Neurociencias/historia
14.
J Physiol ; 596(3): 497-513, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29235097

RESUMEN

KEY POINTS: In the rat nucleus of the solitary tract (NTS), activation of astrocytic proteinase-activated receptor 1 (PAR1) receptors leads to potentiation of neuronal synaptic activity by two mechanisms, one TRPV1-dependent and one TRPV1-independent. PAR1-dependent activation of presynaptic TRPV1 receptors facilitates glutamate release onto NTS neurons. The TRPV1-dependent mechanism appears to rely on astrocytic release of endovanilloid-like molecules. A subset of NTS neurons excited by PAR1 directly project to the rostral ventral respiratory group. The PAR1 initiated, TRPV1-dependent modulation of synaptic transmission in the NTS contributes to regulation of breathing. ABSTRACT: Many of the cellular and molecular mechanisms underlying astrocytic modulation of synaptic function remain poorly understood. Recent studies show that G-protein coupled receptor-mediated astrocyte activation modulates synaptic transmission in the nucleus of the solitary tract (NTS), a brainstem nucleus that regulates crucial physiological processes including cardiorespiratory activity. By using calcium imaging and patch clamp recordings in acute brain slices of wild-type and TRPV1-/- rats, we show that activation of proteinase-activated receptor 1 (PAR1) in NTS astrocytes potentiates presynaptic glutamate release on NTS neurons. This potentiation is mediated by both a TRPV1-dependent and a TRPV1-independent mechanism. The TRPV1-dependent mechanism appears to require release of endovanilloid-like molecules from astrocytes, which leads to subsequent potentiation of presynaptic glutamate release via activation of presynaptic TRPV1 channels. Activation of NTS astrocytic PAR1 receptors elicits cFOS expression in neurons that project to respiratory premotor neurons and inhibits respiratory activity in control, but not in TRPV1-/- rats. Thus, activation of astrocytic PAR1 receptor in the NTS leads to a TRPV1-dependent excitation of NTS neurons causing a potent modulation of respiratory motor output.


Asunto(s)
Astrocitos/fisiología , Neuronas/fisiología , Receptor PAR-1/metabolismo , Respiración , Núcleo Solitario/fisiología , Transmisión Sináptica , Canales Catiónicos TRPV/metabolismo , Potenciales de Acción , Animales , Astrocitos/citología , Potenciales Postsinápticos Excitadores , Masculino , Neuronas/citología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/citología
15.
Elife ; 62017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29251596

RESUMEN

Striosomes were discovered several decades ago as neurochemically identified zones in the striatum, yet technical hurdles have hampered the study of the functions of these striatal compartments. Here we used 2-photon calcium imaging in neuronal birthdate-labeled Mash1-CreER;Ai14 mice to image simultaneously the activity of striosomal and matrix neurons as mice performed an auditory conditioning task. With this method, we identified circumscribed zones of tdTomato-labeled neuropil that correspond to striosomes as verified immunohistochemically. Neurons in both striosomes and matrix responded to reward-predicting cues and were active during or after consummatory licking. However, we found quantitative differences in response strength: striosomal neurons fired more to reward-predicting cues and encoded more information about expected outcome as mice learned the task, whereas matrix neurons were more strongly modulated by recent reward history. These findings open the possibility of harnessing in vivo imaging to determine the contributions of striosomes and matrix to striatal circuit function.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas/fisiología , Imagen Óptica/métodos , Estimulación Acústica , Potenciales de Acción , Animales , Calcio/análisis , Condicionamiento Clásico , Ratones
16.
J Biol Chem ; 289(15): 10831-10842, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567331

RESUMEN

The ability of a neuron to transduce extracellular signals into long lasting changes in neuronal morphology is central to its normal function. Increasing evidence shows that coordinated regulation of synaptic and nuclear signaling in response to NMDA receptor activation is crucial for long term memory, synaptic tagging, and epigenetic signaling. Although mechanisms have been proposed for synapse-to-nuclear communication, it is unclear how signaling is coordinated at both subcompartments. Here, we show that activation of NMDA receptors induces the bi-directional and concomitant shuttling of the scaffold protein afadin from the cytosol to the nucleus and synapses. Activity-dependent afadin nuclear translocation peaked 2 h post-stimulation, was independent of protein synthesis, and occurred concurrently with dendritic spine remodeling. Moreover, activity-dependent afadin nuclear translocation coincides with phosphorylation of histone H3 at serine 10 (H3S10p), a marker of epigenetic modification. Critically, blocking afadin nuclear accumulation attenuated activity-dependent dendritic spine remodeling and H3 phosphorylation. Collectively, these data support a novel model of neuronal nuclear signaling whereby dual-residency proteins undergo activity-dependent bi-directional shuttling from the cytosol to synapses and the nucleus, coordinately regulating dendritic spine remodeling and histone modifications.


Asunto(s)
Núcleo Celular/metabolismo , Espinas Dendríticas/metabolismo , Histonas/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Sinapsis/metabolismo , Transporte Activo de Núcleo Celular , Animales , Encéfalo/embriología , Citosol/metabolismo , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Transducción de Señal
17.
J Neurophysiol ; 110(2): 368-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23615553

RESUMEN

The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K(+)-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-ß-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Neuroglía/fisiología , Núcleo Solitario/fisiología , Transmisión Sináptica/fisiología , Animales , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Masculino , Protones , Ratas , Ratas Sprague-Dawley
18.
J Biol Chem ; 287(43): 35964-74, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22948147

RESUMEN

The dendritic field of a neuron, which is determined by both dendritic architecture and synaptic strength, defines the synaptic input of a cell. Once established, a neuron's dendritic field is thought to remain relatively stable throughout a cell's lifetime. Perturbations in a dendritic structure or excitatory tone of a cell and thus its dendritic field are cellular alterations thought to be correlated with a number of psychiatric disorders. Although several proteins are known to regulate the development of dendritic arborization, much less is known about the mechanisms that maintain dendritic morphology and synaptic strength. In this study, we find that afadin, a component of N-cadherin·ß-catenin·α-N-catenin adhesion complexes, is required for the maintenance of established dendritic arborization and synapse number. We further demonstrate that afadin directly interacts with AMPA receptors and that loss of this protein reduces the surface expression of GluA1- and GluA2-AMPA receptor subunits. Collectively, these data suggest that afadin is required for the maintenance of dendritic structure and excitatory tone.


Asunto(s)
Dendritas/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Dendritas/genética , Regulación de la Expresión Génica/fisiología , Proteínas con Dominio LIM/genética , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Sinapsis/genética , alfa Catenina/genética , alfa Catenina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
J Physiol ; 590(19): 4761-75, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22890703

RESUMEN

Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 µM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Respiración , Núcleo Solitario/fisiología , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Amilorida/farmacología , Animales , Femenino , Técnicas In Vitro , Masculino , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
20.
J Biol Chem ; 286(19): 17281-91, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21454511

RESUMEN

Mutations in TRPV4 have been linked to three distinct axonal neuropathies. However, the pathogenic mechanism underlying these disorders remains unclear. Both gain and loss of calcium channel activity of the mutant TRPV4 have been suggested. Here, we show that the three previously reported TRPV4 mutant channels have a physiological localization and display an increased calcium channel activity, leading to increased cytotoxicity in three different cell types. Patch clamp experiments showed that cells expressing mutant TRPV4 have much larger whole-cell currents than those expressing the wild-type TRPV4 channel. Single channel recordings showed that the mutant channels have higher open probability, due to a modification of gating, and no change in single-channel conductance. These data support the hypothesis that a "gain of function" mechanism, possibly leading to increased intracellular calcium influx, underlies the pathogenesis of the TRPV4-linked axonal neuropathies, and may have immediate implications for designing rational therapies.


Asunto(s)
Axones/metabolismo , Mutación , Enfermedades Neurodegenerativas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular , Citoplasma/metabolismo , ADN Complementario/metabolismo , Electrofisiología/métodos , Células HeLa , Humanos , Microscopía Confocal/métodos , Modelos Biológicos , Modelos Estadísticos , Proteínas Nucleares/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...