Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 200, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351049

RESUMEN

Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) affect ecosystem services provisions, but they vary widely due to differences in agronomic practices, soil properties, and climate. Cereal rye (Secale cereale) is the most common winter cover crop in the United States due to its winter hardiness, low seed cost, and high biomass production. We compiled data on cereal rye winter cover crop performance metrics, agronomic practices, and soil properties across the eastern half of the United States. The dataset includes a total of 5,695 cereal rye biomass observations across 208 site-years between 2001-2022 and encompasses a wide range of agronomic, soils, and climate conditions. Cereal rye biomass values had a mean of 3,428 kg ha-1, a median of 2,458 kg ha-1, and a standard deviation of 3,163 kg ha-1. The data can be used for empirical analyses, to calibrate, validate, and evaluate process-based models, and to develop decision support tools for management and policy decisions.


Asunto(s)
Grano Comestible , Secale , Agricultura , Ecosistema , Grano Comestible/crecimiento & desarrollo , Estaciones del Año , Secale/crecimiento & desarrollo , Suelo , Estados Unidos
2.
Sci Total Environ ; 857(Pt 1): 159255, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36216052

RESUMEN

Perennial grains, such as the intermediate wheatgrass (Thinopyrum intermedium) (IWG), may reduce negative environmental effects compared to annual grain crops. Their permanent, and generally larger, root systems are likely to retain nitrogen (N) better, decreasing harmful losses of N and improving fertilizer N use efficiency, but there have been no comprehensive N fertilizer recovery studies in IWG to date. We measured fertilizer N recovery with stable isotope tracers in crop biomass and soil, soil N mineralization and nitrification, and nitrate leaching in IWG and annual wheat in a replicated block field experiment. Nitrate leaching was drastically reduced in IWG (0.1 and 3.1 kg N ha-1 yr-1) in its third and fourth year since establishment, compared with 5.6 kg N ha-1 yr-1 in annual wheat and 41.0 kg N ha-1 yr-1 in fallow respectively. There were no differences in net N mineralization or nitrification between IWG and annual wheat, though there was generally more inorganic N in the soil profile of annual wheat. More 15N fertilizer was recovered in the straw and all depths of the roots and soils in IWG than annual wheat. However, annual wheat recovered much more 15N fertilizer in the seeds compared to IWG, which had lower grain yields. 15N-labeled fertilizer contributed little (<3 %) to nitrate-N in leachate, highlighting the role of soil microbes in regulating loss of current year fertilizer N. The large reduction in nitrate leaching demonstrates that perennial grains can reduce harmful nitrogen losses and offer a more sustainable alternative to annual grains.


Asunto(s)
Fertilizantes , Nitratos , Fertilizantes/análisis , Nitratos/análisis , Triticum , Agricultura , Suelo , Nitrógeno/análisis , Óxidos de Nitrógeno
3.
Glob Chang Biol ; 26(3): 1668-1680, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31984585

RESUMEN

Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta-analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha-1  year-1 would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.


Asunto(s)
Agricultura , Nitrógeno , Fertilizantes , Óxido Nitroso , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...