Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34845903

RESUMEN

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/metabolismo , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Amycolatopsis/enzimología , Amycolatopsis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Liasas de Carbono-Carbono/genética , Dominio Catalítico/genética , Secuencia Conservada , Cristalografía por Rayos X , Estabilidad de Enzimas/genética , Evolución Molecular , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
2.
Biochemistry ; 60(19): 1552-1563, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33900734

RESUMEN

Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. The exterior cell surface of C. jejuni is coated with a capsular polysaccharide (CPS) that is essential for the maintenance and integrity of the bacterial cell wall and evasion of the host immune response. The identity and sequences of the monosaccharide components of the CPS are quite variable and dependent on the specific strain of C. jejuni. It is currently thought that the immediate precursor for the multiple variations found in the heptose moieties of the C. jejuni CPS is GDP-d-glycero-α-d-manno-heptose. In C. jejuni NCTC 11168, the heptose moiety is d-glycero-l-gluco-heptose. It has previously been shown that Cj1427 catalyzes the oxidation of GDP-d-glycero-α-d-manno-heptose to GDP-d-glycero-4-keto-α-d-lyxo-heptose using α-ketoglutarate as a cosubstrate. Cj1430 was now demonstrated to catalyze the double epimerization of this product at C3 and C5 to form GDP-d-glycero-4-keto-ß-l-xylo-heptose. Cj1428 subsequently catalyzes the stereospecific reduction of this GDP-linked heptose by NADPH to form GDP-d-glycero-ß-l-gluco-heptose. The three-dimensional crystal structure of Cj1430 was determined to a resolution of 1.85 Å in the presence of bound GDP-d-glycero-ß-l-gluco-heptose, a product analogue. The structure shows that it belongs to the cupin superfamily. The three-dimensional crystal structure of Cj1428 was solved in the presence of NADPH to a resolution of 1.50 Å. Its fold places it into the short-chain dehydrogenase/reductase superfamily. Typically, members in this family display a characteristic signature sequence of YXXXK, with the conserved tyrosine serving a key role in catalysis. In Cj1428, this residue is a phenylalanine.


Asunto(s)
Campylobacter jejuni/metabolismo , Heptosas/biosíntesis , Proteínas Bacterianas/química , Campylobacter jejuni/patogenicidad , Guanosina Difosfato/metabolismo , Heptosas/química , Heptosas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Monosacáridos/metabolismo , Oxidorreductasas/metabolismo , Polisacáridos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo
3.
Biochemistry ; 59(22): 2069-2077, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32437133

RESUMEN

YcjR from Escherichia coli K-12 MG1655 catalyzes the manganese-dependent reversible epimerization of 3-keto-α-d-gulosides to the corresponding 3-keto-α-d-glucosides as a part of a proposed catabolic pathway for the transformation of d-gulosides to d-glucosides. The three-dimensional structure of the manganese-bound enzyme was determined by X-ray crystallography. The divalent manganese ion is coordinated to the enzyme by ligation to Glu-146, Asp-179, His-205, and Glu-240. When either of the two active site glutamate residues is mutated to glutamine, the enzyme loses all catalytic activity for the epimerization of α-methyl-3-keto-d-glucoside at C4. However, the E240Q mutant can catalyze hydrogen-deuterium exchange of the proton at C4 of α-methyl-3-keto-d-glucoside in solvent D2O. The E146Q mutant does not catalyze this exchange reaction. These results indicate that YcjR catalyzes the isomerization of 3-keto-d-glucosides via proton abstraction at C4 by Glu-146 to form a cis-enediolate intermediate that is subsequently protonated on the opposite face by Glu-240 to generate the corresponding 3-keto-d-guloside. This conclusion is supported by docking of the cis-enediolate intermediate into the active site of YcjR based on the known binding orientation of d-fructose and d-psicose in the active site of d-psicose-3-epimerase.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/metabolismo , Glucósidos/metabolismo , Cristalografía por Rayos X , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Glucósidos/química , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
4.
Biochemistry ; 59(13): 1328-1337, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32168448

RESUMEN

The capsular polysaccharides (CPS) of Campylobacter jejuni contain multiple heptose residues with variable stereochemical arrangements at C3-C6. The immediate precursor to all of these possible variations is currently believed to be GDP-d-glycero-α-d-manno-heptose. Oxidation of this substrate at C4 enables subsequent epimerization reactions at C3-C5 that can be coupled to the dehydration/reduction at C5/C6. However, the enzyme responsible for the critical oxidation of C4 from GDP-d-glycero-α-d-manno-heptose has remained elusive. The enzyme Cj1427 from C. jejuni NCTC 11168 was shown to catalyze the oxidation of GDP-d-glycero-α-d-manno-heptose to GDP-d-glycero-4-keto-α-d-lyxo-heptose in the presence of α-ketoglutarate using mass spectrometry and nuclear magnetic resonance spectroscopy. At pH 7.4, the apparent kcat is 0.6 s-1, with a value of kcat/Km of 1.0 × 104 M-1 s-1 for GDP-d-glycero-α-d-manno-heptose. α-Ketoglutarate is required to recycle the tightly bound NADH nucleotide in the active site of Cj1427, which does not dissociate from the enzyme during catalysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/enzimología , Guanosina Difosfato/metabolismo , Heptosas/metabolismo , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Dominio Catalítico , Guanosina Difosfato/química , Heptosas/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Cinética , NAD/química , NAD/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética
5.
Biochemistry ; 59(13): 1314-1327, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32168450

RESUMEN

Many strains of Campylobacter jejuni display modified heptose residues in their capsular polysaccharides (CPS). The precursor heptose was previously shown to be GDP-d-glycero-α-d-manno-heptose, from which a variety of modifications of the sugar moiety have been observed. These modifications include the generation of 6-deoxy derivatives and alterations of the stereochemistry at C3-C6. Previous work has focused on the enzymes responsible for the generation of the 6-deoxy derivatives and those involved in altering the stereochemistry at C3 and C5. However, the generation of the 6-hydroxyl heptose residues remains uncertain due to the lack of a specific enzyme to catalyze the initial oxidation at C4 of GDP-d-glycero-α-d-manno-heptose. Here we reexamine the previously reported role of Cj1427, a dehydrogenase found in C. jejuni NTCC 11168 (HS:2). We show that Cj1427 is co-purified with bound NADH, thus hindering catalysis of oxidation reactions. However, addition of a co-substrate, α-ketoglutarate, converts the bound NADH to NAD+. In this form, Cj1427 catalyzes the oxidation of l-2-hydroxyglutarate back to α-ketoglutarate. The crystal structure of Cj1427 with bound GDP-d-glycero-α-d-manno-heptose shows that the NAD(H) cofactor is ideally positioned to catalyze the oxidation at C4 of the sugar substrate. Additionally, the overall fold of the Cj1427 subunit places it into the well-defined short-chain dehydrogenase/reductase superfamily. The observed quaternary structure of the tetrameric enzyme, however, is highly unusual for members of this superfamily.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/química , Campylobacter jejuni/enzimología , Heptosas/biosíntesis , NAD/metabolismo , Oxidorreductasas/química , Polisacáridos Bacterianos/metabolismo , Cápsulas Bacterianas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Heptosas/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Polisacáridos Bacterianos/química
6.
Biochemistry ; 58(37): 3893-3902, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31449400

RESUMEN

The capsular polysaccharide (CPS) structure of Campylobacter jejuni contributes to its robust fitness. Many strains contain heptose moieties in their CPS units. The precursor heptose is GDP-d-glycero-α-d-manno-heptose; modifications to the stereochemistry at C3-C6 as well as additions of methyl and phosphoramidate groups lend to the hypervariability of the C. jejuni CPS structures. Synthesis of GDP-d-glycero-α-d-manno-heptose has been described previously, but using enzymes from Aneurinibacillus thermoaerophilus DSM 10155. Here we describe the complete synthesis of GDP-d-glycero-α-d-manno-heptose using enzymes from C. jejuni NTCC 11168: Cj1152 and Cj1423-Cj1425. Our results yield kinetic parameters for these enzymes and outline a successful strategy for milligram-gram scale synthesis of GDP-d-glycero-α-d-manno-heptose. This achievement is critical for the characterization of other carbohydrate tailoring enzymes, which are expected to utilize GDP-d-glycero-α-d-manno-heptose for the biosynthesis of more complex carbohydrates in the CPS of C. jejuni.


Asunto(s)
Cápsulas Bacterianas/enzimología , Proteínas Bacterianas/biosíntesis , Campylobacter jejuni/enzimología , Guanosina Difosfato/biosíntesis , Heptosas/biosíntesis , Polisacáridos/biosíntesis , Biosíntesis de Proteínas/fisiología
7.
Biochemistry ; 58(31): 3354-3364, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31314509

RESUMEN

The ydj gene cluster is annotated to catalyze the catabolism of an unknown carbohydrate. Previously, YdjI, a class II aldolase, was shown to catalyze the retro-aldol cleavage of l-glycero-l-galacto-octuluronate-1-phosphate into DHAP and l-arabinuronate. In this report, the functional characterization of YdjH is presented. YdjH catalyzes the phosphorylation of 2-keto-monosaccharides at the C1 hydroxyl group with a substrate profile significantly more stringent than that of YdjI. Similar to YdjI, YdjH shows a strong preference for higher-order monosaccharides (seven to nine carbons) with a carboxylate terminus. The best substrate was determined to be l-glycero-l-galacto-octuluronate, yielding l-glycero-l-galacto-octuluronate-1-phosphate with a kcat of 16 s-1 and a kcat/Km of 2.1 × 104 M-1 s-1. This is apparently the first reported example of kinase activity with eight-carbon monosaccharides. Two crystal structures of YdjH were previously determined to 2.15 and 1.8 Å resolution (Protein Data Bank entries 3H49 and 3IN1 ). We present an analysis of the active site layout and use computational docking to identify potential key residues in the binding of l-glycero-l-galacto-octuluronate.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Proteínas Quinasas/metabolismo , Azúcares/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Biología Computacional , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Simulación del Acoplamiento Molecular , Familia de Multigenes , Proteínas Quinasas/química , Proteínas Quinasas/genética , Especificidad por Sustrato
8.
Biochemistry ; 58(31): 3340-3353, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31322866

RESUMEN

The ydj gene cluster is found in 80% of sequenced Escherichia coli genomes and other closely related species in the human microbiome. On the basis of the annotations of the enzymes located in this cluster, it is expected that together they catalyze the catabolism of an unknown carbohydrate. The focus of this investigation is on YdjI, which is in the ydj gene cluster of E. coli K-12. It is predicted to be a class II aldolase of unknown function. Here we describe a structural and functional characterization of this enzyme. YdjI catalyzes the hydrogen/deuterium exchange of the pro-S hydrogen at C3 of dihydroxyacetone phosphate (DHAP). In the presence of DHAP, YdjI catalyzes an aldol condensation with a variety of aldo sugars. YdjI shows a strong preference for higher-order (seven-, eight-, and nine-carbon) monosaccharides with specific hydroxyl stereochemistries and a negatively charged terminus (carboxylate or phosphate). The best substrate is l-arabinuronic acid with an apparent kcat of 3.0 s-1. The product, l-glycero-l-galacto-octuluronate-1-phosphate, has a kcat/Km value of 2.1 × 103 M-1 s-1 in the retro-aldol reaction with YdjI. This is the first recorded synthesis of l-glycero-l-galacto-octuluronate-1-phosphate and six similar carbohydrates. The crystal structure of YdjI, determined to a nominal resolution of 1.75 Å (Protein Data Bank entry 6OFU ), reveals unusual positions for two arginine residues located near the active site. Computational docking was utilized to distinguish preferable binding orientations for l-glycero-l-galacto-octuluronate-1-phosphate. These results indicate a possible alternative binding orientation for l-glycero-l-galacto-octuluronate-1-phosphate compared to that observed in other class II aldolases, which utilize shorter carbohydrate molecules.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Biocatálisis , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
9.
Biochemistry ; 58(10): 1388-1399, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30742415

RESUMEN

A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl ß-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl ß-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Glucosa Deshidrogenasas/genética , Glucósidos/metabolismo , Catálisis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glucosa/química , Glucosa Deshidrogenasas/metabolismo , Glucósidos/genética , Cinética , Familia de Multigenes , Oxidación-Reducción , Oxidorreductasas/metabolismo , Especificidad por Sustrato
10.
Arch Biochem Biophys ; 623-624: 9-19, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28499743

RESUMEN

trans- and cis-3-Chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively) catalyze the hydrolytic dehalogenation of their respective isomers and represent key steps in the bacterial conversion of 1,3-dichloropropene to acetaldehyde. In prior work, a kinetic mechanism for the CaaD-catalyzed reaction could not be unequivocally determined because (1) the order of product release could not be determined and (2) the fluorescence factor for the enzyme species, E*PQ (where P = bromide and Q = malonate semialdehyde, the two products of the reaction) could not be assigned. The ambiguities in the model have now been resolved by stopped-flow experiments following the reaction using an active site fluorescent probe, αY60W-CaaD and 3-bromopropiolate, previously shown to be a mechanism-based inhibitor of CaaD, coupled with the rate of bromide release in the course of CaaD inactivation. A global fit of the combined datasets provides a complete minimal model for the reaction of αY60W-CaaD and 3-bromoacrylate. In addition, the global fit produces kinetic constants for CaaD inactivation by 3-bromopropiolate and implicates the acyl bromide as the inactivating species. Finally, a comparison of the model with that for cis-CaaD shows that for both enzymes turnover is limited by product release and not chemistry.


Asunto(s)
Hidrolasas/metabolismo , Pseudomonas/enzimología , Bromuros/metabolismo , Dominio Catalítico , Activación Enzimática , Humanos , Hidrolasas/química , Hidrólisis , Cinética , Malonatos/metabolismo , Simulación del Acoplamiento Molecular , Pseudomonas/química , Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Incertidumbre
11.
Biochemistry ; 54(19): 3009-23, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25894805

RESUMEN

Cg10062 is a cis-3-chloroacrylic acid dehalogenase (cis-CaaD) homologue from Corynebacterium glutamicum with an unknown function and an uninformative genomic context. It shares 53% pairwise sequence similarity with cis-CaaD including the six active site amino acids (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114) that are critical for cis-CaaD activity. However, Cg10062 is a poor cis-CaaD: it lacks catalytic efficiency and isomer specificity. Two acetylene compounds (propiolate and 2-butynoate) and an allene compound, 2,3-butadienoate, were investigated as potential substrates. Cg10062 functions as a hydratase/decarboxylase using propiolate as well as the cis-3-chloro- and 3-bromoacrylates, generating mixtures of malonate semialdehyde and acetaldehyde. The two activities occur sequentially at the active site using the initial substrate. With 2,3-butadienoate and 2-butynoate, Cg10062 functions as a hydratase and converts both to acetoacetate. Mutations of the proposed water-activating residues (E114Q, E114D, and Y103F) have a range of consequences from a reduction in wild type activity to a switch of activities (i.e., hydratase into a hydratase/decarboxylase or vice versa). The intermediates for the hydration and decarboxylation products can be trapped as covalent adducts to Pro-1 when NaCNBH3 is incubated with the E114D mutant and 2,3-butadienoate or 2-butynoate, and the Y103F mutant and 2-butynoate. Three mechanisms are presented to explain these findings. One mechanism involves the direct attack of water on the substrate, whereas the other two mechanisms use covalent catalysis in which a covalent bond forms between Pro-1 and the hydration product or the substrate. The strengths and weaknesses of the mechanisms and the implications for Cg10062 function are discussed.


Asunto(s)
Alcadienos/metabolismo , Hidrolasas/metabolismo , Acetileno , Descarboxilación
12.
Arch Biochem Biophys ; 564: 189-96, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25219626

RESUMEN

Tautomerase superfamily members are characterized by a ß-α-ß building block and a catalytic amino terminal proline. 4-Oxalocrotonate tautomerase (4-OT) and malonate semialdehyde decarboxylase (MSAD) are the title enzymes of two of the five known families in the superfamily. Two recent developments in these families indicate that there might be more metabolic diversity in the tautomerase superfamily than previously thought. 4-OT homologues have been identified in three biosynthetic pathways, whereas all previously characterized 4-OTs are found in catabolic pathways. In the MSAD family, homologues have been characterized that lack decarboxylase activity, but have a modest hydratase activity using 2-oxo-3-pentynoate. This observation stands in contrast to the first characterized MSAD, which is a proficient decarboxylase and a less efficient hydratase. The hydratase activity was thought to be a vestigial and promiscuous activity. However, this recent discovery suggests that the hydratase activity might reflect a new activity in the MSAD family for an unknown substrate. These discoveries open up new avenues of research in the tautomerase superfamily.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Carboxiliasas/química , Isomerasas/química , Homología Estructural de Proteína , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Isomerasas/genética , Isomerasas/metabolismo
13.
FEBS Lett ; 587(17): 2842-50, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23851010

RESUMEN

trans-3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing ßPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (ßAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (ßN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and ßAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas/química , Pseudomonas/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Hidrolasas/genética , Cinética , Simulación del Acoplamiento Molecular , Peso Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Unión Proteica , Estructura Secundaria de Proteína
14.
Biochemistry ; 52(24): 4204-16, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23692140

RESUMEN

cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 are 34% identical in sequence (54% similar). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis isomer. The basis for these differences is unknown, but a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A six-residue active site loop in cis-CaaD shows a conformation strikingly different from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. To examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to that of wild-type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover because of the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to covalent catalysis (using Pro-1) followed by hydrolysis of the enamine or imine tautomer in cis-CaaD versus direct hydration of the allene to yield acetoacetate in the case of Cg10062. The T34A mutant shows partial inactivation, requiring five turnovers of the substrate per monomer, which suggests that the direct hydration route is favored 80% of the time. However, the mutation does not alter the stereochemistry at C-2 of [2-D]acetoacetate when the reaction is conducted in D2O. Both cis-CaaD and the T34 mutant generate (2R)-[2-D]acetoacetate, whereas Cg10062 generates mostly the 2S isomer. The combined observations are consistent with a role for the loop region in cis-CaaD specificity and catalysis, but the precise role remains to be determined.


Asunto(s)
Análisis Mutacional de ADN , Hidrolasas/química , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Dominio Catalítico , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Pseudomonas/enzimología , Pseudomonas/metabolismo , Especificidad por Sustrato
15.
Biochemistry ; 51(46): 9420-35, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23110338

RESUMEN

The bacterial degradation of the nematicide 1,3-dichloropropene, an isomeric mixture, requires the action of trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively). Both enzymes are tautomerase superfamily members and share a core catalytic mechanism for the hydrolytic dehalogenation of the respective isomer of 3-haloacrylate. The observation that cis-CaaD requires two additional residues raises the question of how CaaD conducts a comparable reaction with fewer catalytic residues. As part of an effort to determine the basis for the apparently simpler CaaD-catalyzed reaction, the kinetic mechanism was determined by stopped-flow and chemical-quench techniques using a fluorescent mutant form of the enzyme, αY60W-CaaD, and trans-3-bromoacrylate as the substrate. The data from these experiments as well as bromide inhibition studies are best accommodated by a six-step model that provides individual rate constants for substrate binding, chemistry, and a proposed conformational change occurring after chemistry followed by release of malonate semialdehyde and bromide. The conformational change and product release rates are comparable, and together they limit the rate of turnover. The kinetic analysis and modeling studies validate the αY60W-CaaD mutant as an accurate reporter of active site events during the course of the enzyme-catalyzed reaction. The kinetic mechanism for the αY60W-CaaD-catalyzed reaction is comparable to that obtained for the cis-CaaD-catalyzed reaction. The kinetic model and the validated αY60W-CaaD mutant set the stage for an analysis of active site mutants to explore the contributions of individual catalytic residues and the basis for the simplicity of the reaction.


Asunto(s)
Hidrolasas/metabolismo , Mutación , Secuencia de Bases , Dominio Catalítico , Cartilla de ADN , Hidrolasas/genética , Cinética , Reacción en Cadena de la Polimerasa
16.
J Am Chem Soc ; 134(1): 293-304, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22129074

RESUMEN

cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.


Asunto(s)
Alcadienos/metabolismo , Aminas/metabolismo , Butiratos/metabolismo , Hidrolasas/metabolismo , Alcadienos/química , Aminas/química , Biocatálisis , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Hidrolasas/química , Cinética , Modelos Químicos , Modelos Moleculares , Mapeo Peptídico , Estructura Secundaria de Proteína , Pseudomonas/enzimología , Staphylococcus aureus/enzimología , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...