Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 66(3): 1313-9, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16452184

RESUMEN

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene results in highly vascularized tumors, making the VHL tumor syndrome an ideal system to study the mechanisms of angiogenesis. VHL operates along two pathways with the first involving hypoxia-inducible factor-alpha degradation and down-regulation of its proangiogenic target genes vascular endothelial growth factor and platelet-derived growth factor-beta, and the second pathway promoting extracellular matrix (ECM) assembly. Secretion of proangiogenic factors was shown to be a primary inducer of angiogenesis. Here, we show that loss of ECM assembly correlates with tumor angiogenesis in VHL disease. Upon inactivation of the VHL-ECM assembly pathway, we observe tumors that are highly vascularized, have a disrupted ECM, and show increased matrix metalloproteinase-2 activity. Loss of the VHL pathway leading to hypoxia-inducible factor-alpha degradation results in tumors with increased vascular endothelial growth factor levels but with surprisingly low microvessel density, a tightly assembled ECM and low invasive ability. We conclude that loss of ECM integrity could promote and maintain tumor angiogenesis by providing a route for blood vessels to infiltrate tumors.


Asunto(s)
Carcinoma de Células Renales/irrigación sanguínea , Carcinoma de Células Renales/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/metabolismo , Enfermedad de von Hippel-Lindau/metabolismo , Animales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Colágeno Tipo IV/metabolismo , Matriz Extracelular/patología , Fibronectinas/metabolismo , Humanos , Neoplasias Renales/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
2.
Am J Transplant ; 5(5): 1002-10, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15816880

RESUMEN

The major limitation for the application of an autologous in vitro tissue-engineered reconstructed skin (RS) for the treatment of burnt patients is the delayed vascularization of its relatively thick dermal avascular component, which may lead to graft necrosis. We have developed a human endothelialized reconstructed skin (ERS), combining keratinocytes, fibroblasts and endothelial cells (EC) in a collagen sponge. This skin substitute then spontaneously forms a network of capillary-like structures (CLS) in vitro. After transplantation to nude mice, we demonstrated that CLS containing mouse blood were observed underneath the epidermis in the ERS in less than 4 days, a delay comparable to our human skin control. In comparison, a 14-day period was necessary to achieve a similar result with the non-endothelialized RS. Furthermore, no mouse blood vessels were ever observed close to the epidermis before 14 days in the ERS and the RS. We thus concluded that the early vascularization observed in the ERS was most probably the result of inosculation of the CLS network with the host's capillaries, rather than neovascularization, which is a slower process. These results open exciting possibilities for the clinical application of many other tissue-engineered organs requiring a rapid vascularization.


Asunto(s)
Capilares/patología , Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Animales , Capilares/metabolismo , Línea Celular , Trasplante de Células , Células Cultivadas , Quitosano/química , Colágeno/química , Células Endoteliales/citología , Endotelio Vascular/citología , Epidermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Glicosaminoglicanos/química , Humanos , Inmunohistoquímica , Queratinocitos/citología , Masculino , Ratones , Ratones Desnudos , Microscopía Confocal , Microscopía Fluorescente , Modelos Biológicos , Necrosis , Polímeros/química , Piel/patología , Trasplante de Piel , Factores de Tiempo , Venas Umbilicales/citología
3.
J Cell Biol ; 166(3): 347-57, 2004 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-15277541

RESUMEN

Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7-ve progeny destined for differentiation. Some of the Pax7+ve/MyoD-ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool.


Asunto(s)
Diferenciación Celular/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Regulación hacia Abajo , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Proteína MioD/metabolismo , Factor de Transcripción PAX7
4.
Exp Cell Res ; 281(1): 39-49, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12441128

RESUMEN

The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration.


Asunto(s)
Proteínas de Unión al ADN , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Proteína MioD/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología , Transactivadores , Animales , División Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Células Cultivadas , Cinética , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína MioD/genética , Factor 5 Regulador Miogénico , Células Satélite del Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...