RESUMEN
Inflammatory cytokines like TNF play a central role in autoimmune disorders such as rheumatoid arthritis. We identified the tyrosine kinase bone marrow kinase on chromosome X (BMX) as an essential component of a shared inflammatory signaling pathway. Transient depletion of BMX strongly reduced secretion of IL-8 in cell lines and primary human cells stimulated by TNF, IL-1ß, or TLR agonists. BMX was required for phosphorylation of p38 MAPK and JNK, as well as activation of NF-κB. The following epistasis analysis indicated that BMX acts downstream of or at the same level as the complex TGF-ß activated kinase 1 (TAK1)-TAK1 binding protein. At the cellular level, regulation of the IL-8 promoter required the pleckstrin homology domain of BMX, which could be replaced by an ectopic myristylation signal, indicating a requirement for BMX membrane association. In addition, activation of the IL-8 promoter by in vitro BMX overexpression required its catalytic activity. Genetic ablation of BMX conferred protection in the mouse arthritis model of passive K/BxN serum transfer, confirming that BMX is an essential mediator of inflammation in vivo. However, genetic replacement with a catalytically inactive BMX allele was not protective in the same arthritis animal model. We conclude that BMX is an essential component of inflammatory cytokine signaling and that catalytic, as well as noncatalytic functions of BMX are involved.
Asunto(s)
Artritis/inmunología , Proteínas Tirosina Quinasas/metabolismo , Animales , Artritis/metabolismo , Proteínas Sanguíneas , Línea Celular , Modelos Animales de Enfermedad , Células HeLa , Humanos , Immunoblotting , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , FN-kappa B/metabolismo , Fosfoproteínas , Fosforilación , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factores de Necrosis Tumoral/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The intracellular signaling pathway by which tumor necrosis factor (TNF) induces its pleiotropic actions is well characterized and includes unique components as well as modules shared with other signaling pathways. In addition to the currently known key effectors, further molecules may however modulate the biological response to TNF. In our attempt to characterize novel regulators of the TNF signaling cascade, we have identified transmembrane protein 9B (TMEM9B, c11orf15) as an important component of TNF signaling and a module shared with the interleukin 1beta (IL-1beta) and Toll-like receptor (TLR) pathways. TMEM9B is a glycosylated protein localized in membranes of the lysosome and partially in early endosomes. The expression of TMEM9B is required for the production of proinflammatory cytokines induced by TNF, IL-1beta, and TLR ligands but not for apoptotic cell death triggered by TNF or Fas ligand. TMEM9B is essential in TNF activation of both the NF-kappaB and MAPK pathways. It acts downstream of RIP1 and upstream of the MAPK and IkappaB kinases at the level of the TAK1 complex. These findings indicate that TMEM9B is a key component of inflammatory signaling pathways and suggest that endosomal or lysosomal compartments regulate these pathways.
Asunto(s)
Proteínas de la Membrana/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Endosomas/metabolismo , Proteína Ligando Fas , Células HeLa , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Modelos Biológicos , Transducción de Señal , Receptores Toll-Like/metabolismoRESUMEN
BACKGROUND: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase. RESULTS: Here we report the identification of genes that, when suppressed, result in structural defects in the mitotic spindle leading to bent, twisted, monopolar, or multipolar spindles, and cause cell cycle arrest. We further describe a novel analysis methodology for large-scale RNA interference datasets that relies on supervised clustering of these genes based on Gene Ontology, protein families, tissue expression, and protein-protein interactions. CONCLUSION: This approach was utilized to classify functionally the identified genes in discrete mitotic processes. We confirmed the identity for a subset of these genes and examined more closely their mechanical role in spindle architecture.
Asunto(s)
Genoma Humano , Mitosis/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Humanos , Interferencia de ARNRESUMEN
The high sequence identity observed between UNC-93B of mouse and human imply common evolutionary ancestors and a conserved function. A nonconservative point mutation in the mouse Unc93b1 gene has been associated with defective Toll-like receptor (TLR) signaling and impaired major histocompatibility complex (MHC) I and II restricted antigen responses. Like murine UNC-93B, the human homologue is predicted to form 12 transmembrane domains, and it localizes to the endoplasmic reticulum. In human beings its expression is highest in professional antigen-presenting cells such as dendritic cells and macrophages. Interestingly, UNC-93B itself is specifically induced by TLR3 signaling in monocyte-derived dendritic cells and macrophages. To study the effect of UNC-93B deficiency in TLR signaling and antigen-presentation in human beings, UNC-93B message was knocked down in monocyte-derived dendritic cells and a reduced TNFalpha production in response to TLR3 agonists was observed. In the same experiment, the achieved knockdown had no effect on an MHC II-dependent antigen response, suggesting that the reduced quantity of human UNC-93B was still capable of supporting class II antigen presentation or that UNC-93B is not required for class II antigen presentation in human antigen-presenting cells.
Asunto(s)
Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas de Transporte de Membrana/inmunología , Transducción de Señal , Receptores Toll-Like/metabolismo , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Activación de Linfocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Receptores Toll-Like/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
RNA interference (RNAi) is a natural mechanism for regulating gene expression, which exists in plants, invertebrates, and mammals. We investigated whether non-viral infusion of short interfering RNA (siRNA) by the intracerebroventricular route would enable a sequence-specific gene knockdown in the mouse brain and whether the knockdown translates into disease-relevant behavioral changes. Initially, we targeted enhanced green fluorescent protein (EGFP) in mice overexpressing EGFP. A selective knockdown of both EGFP protein and mRNA was observed throughout the brain, with lesser down-regulation in regions distal to the infusion site. We then targeted endogenous genes, encoding the dopamine (DAT) and serotonin transporters (SERT). DAT-siRNA infusion in adult mice produced a significant down-regulation of DAT mRNA and protein and elicited hyperlocomotion similar, but delayed, to that produced on infusion of GBR-12909, a potent and selective DAT inhibitor. Similarly, SERT-siRNA infusion resulted in significant knockdown of SERT mRNA and protein and elicited reduced immobility in the forced swim test similar to that obtained on infusion of citalopram, a very selective and potent SSRI. Application of this non-viral RNAi approach may accelerate target validation for neuropsychiatric disorders that involve a complex interplay of gene(s) from various brain regions.
Asunto(s)
Encéfalo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Interferencia de ARN/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Animales , Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Regulación hacia Abajo/genética , Proteínas Fluorescentes Verdes/genética , Locomoción/efectos de los fármacos , Trastornos Mentales/tratamiento farmacológico , Ratones , Enfermedades del Sistema Nervioso/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genéticaRESUMEN
Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs). Analysis of >2 million images, acquired by quantitative fluorescence microscopy, showed that depletion of 1,152 genes strongly affected cell-cycle progression. These genes clustered into eight distinct phenotypic categories based on phase of arrest, nuclear area, and nuclear morphology. Phase-specific networks were built by interrogating knowledge-based and physical interaction databases with identified genes. Genome-wide analysis of cell-cycle regulators revealed a number of kinase, phosphatase, and proteolytic proteins and also suggests that processes thought to regulate G(1)-S phase progression like receptor-mediated signaling, nutrient status, and translation also play important roles in the regulation of G(2)/M phase transition. Moreover, 15 genes that are integral to TNF/NF-kappaB signaling were found to regulate G(2)/M, a previously unanticipated role for this pathway. These analyses provide systems-level insight into both known and novel genes as well as pathways that regulate cell-cycle progression, a number of which may provide new therapeutic approaches for the treatment of cancer.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Humano/genética , Análisis por Conglomerados , Citocinesis/genética , Expresión Génica , Genes cdc , Biblioteca Genómica , Humanos , Mitosis/genética , Neoplasias/genética , Fenotipo , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/metabolismoRESUMEN
The largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.66) and siRNAs targeting endogenous genes at mRNA and protein levels. Neural networks trained on a complementary 21-nucleotide (nt) guide sequence were superior to those trained on a 19-nt sequence. BIOPREDsi was used in the design of a genome-wide siRNA collection with two potent siRNAs per gene. When this collection of 50,000 siRNAs was used to identify genes involved in the cellular response to hypoxia, two of the most potent hits were the key hypoxia transcription factors HIF1A and ARNT.
Asunto(s)
Algoritmos , Silenciador del Gen , Modelos Genéticos , Red Nerviosa , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Simulación por Computador , Diseño Asistido por Computadora , Biblioteca de Genes , Modelos Estadísticos , Datos de Secuencia MolecularRESUMEN
Sphingosine-1-phosphate, a lipid mediator produced by sphingosine kinases, regulates diverse cellular processes, ranging from cell growth and survival to effector functions, such as proinflammatory mediator synthesis. Using human A549 epithelial lung carcinoma cells as a model system, we observed transient upregulation of sphingosine kinase type 1 (SPHK1) enzyme activity upon stimulation with both TNF-alpha or IL-1beta. This transient activation of SPHK1 was found to be required for cytokine-induced COX-2 transcription and PGE2 production, since not only specific siRNA (abolishing both basal and induced SPHK1 enzyme activity), but also a dominant-negative SPHK1 mutant (suppressing induced SPHK1 activity only) both reduced COX-2 and PGE2. Furthermore, TNF-alpha- or IL-1beta-induced transcription of selected cytokines, chemokines, and adhesion molecules (IL-6, RANTES, MCP-1, and VCAM-1) was found to require SPHK1 activation. Suppression of SPHK1 activation led to reduction of cytokine-induced IkappaBalpha phosphorylation and consequently diminished NFkappaB activity due to reduced nuclear translocation of RelA (p65), explaining the dependence of inflammatory mediator production on SPHK1 activation. Inhibition of basal SPHK1 activity by N,N-dimethylsphingosine or by downregulation of its expression using siRNA induced spontaneous apoptosis in A549 cells, an effect that can be explained through interference with constitutive NFkappaB activity in this cell type. In contrast, expression of the dominant-negative mutant did not induce apoptosis. Taken together, these findings demonstrate a role of SPHK1 activation in proinflammatory signalling and of SPHK1 basal activity in survival of A549 lung carcinoma cells.
Asunto(s)
Mediadores de Inflamación/metabolismo , Interleucina-1/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ácido Araquidónico/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular/fisiología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Ciclooxigenasa 2 , Dinoprostona/metabolismo , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ionomicina/farmacología , Proteínas de la Membrana , Inhibidor NF-kappaB alfa , FN-kappa B/genética , FN-kappa B/metabolismo , Subunidad p50 de NF-kappa B , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Prostaglandina-Endoperóxido Sintasas/genética , Precursores de Proteínas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacología , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Factor de Transcripción ReIA , Transfección , Molécula 1 de Adhesión Celular Vascular/genéticaRESUMEN
Cellular levels of key regulatory proteins are controlled via ubiquitination and subsequent degradation. Deubiquitinating enzymes or isopeptidases can potentially prevent targeted destruction of protein substrates through deubiquitination prior to proteasomal degradation. However, only one deubiquitinating enzyme to date has been matched to a specific substrate in mammalian cells and shown to functionally modify it. Here we show that the isopeptidase USP2a (ubiquitin-specific protease-2a) interacts with and stabilizes fatty acid synthase (FAS), which is often overexpressed in biologically aggressive human tumors. Further, USP2a is androgen-regulated and overexpressed in prostate cancer, and its functional inactivation results in decreased FAS protein and enhanced apoptosis. Thus, the isopeptidase USP2a plays a critical role in prostate cancer cell survival through FAS stabilization and represents a therapeutic target in prostate cancer.