Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(10): e3002650, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39480879

RESUMEN

Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here, we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the 2 critical lysine residues K43 and K45 with alanine residues leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.


Asunto(s)
Amiloide , Simulación de Dinámica Molecular , Polifosfatos , alfa-Sinucleína , Polifosfatos/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Humanos , Amiloide/metabolismo , Amiloide/química , Sitios de Unión , Lisina/metabolismo , Microscopía por Crioelectrón/métodos , Sinucleinopatías/metabolismo , Simulación del Acoplamiento Molecular
2.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746133

RESUMEN

Aberrant aggregation of α-Synuclein is the pathological hallmark of a set of neurodegenerative diseases termed synucleinopathies. Recent advances in cryo-electron microscopy have led to the structural determination of the first synucleinopathy-derived α-Synuclein fibrils, which contain a non-proteinaceous, "mystery density" at the core of the protofilaments, hypothesized to be highly negatively charged. Guided by previous studies that demonstrated that polyphosphate (polyP), a universally conserved polyanion, significantly accelerates α-Synuclein fibril formation, we conducted blind docking and molecular dynamics simulation experiments to model the polyP binding site in α-Synuclein fibrils. Here we demonstrate that our models uniformly place polyP into the lysine-rich pocket, which coordinates the mystery density in patient-derived fibrils. Subsequent in vitro studies and experiments in cells revealed that substitution of the two critical lysine residues K43 and K45 leads to a loss of all previously reported effects of polyP binding on α-Synuclein, including stimulation of fibril formation, change in filament conformation and stability as well as alleviation of cytotoxicity. In summary, our study demonstrates that polyP fits the unknown electron density present in in vivo α-Synuclein fibrils and suggests that polyP exerts its functions by neutralizing charge repulsion between neighboring lysine residues.

3.
Nat Commun ; 14(1): 4166, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443314

RESUMEN

Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.


Asunto(s)
Lisina , Daño por Reperfusión , Animales , Porcinos , Lisina/metabolismo , Citocromos c/metabolismo , Fosforilación , Acetilación , Procesamiento Proteico-Postraduccional , Apoptosis , Respiración de la Célula/fisiología , Daño por Reperfusión/metabolismo , Músculo Esquelético/metabolismo
4.
Life Sci Alliance ; 2(5)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31533964

RESUMEN

The universally abundant polyphosphate (polyP) accelerates fibril formation of disease-related amyloids and protects against amyloid cytotoxicity. To gain insights into the mechanism(s) by which polyP exerts these effects, we focused on α-synuclein, a well-studied amyloid protein, which constitutes the major component of Lewy bodies found in Parkinson's disease. Here, we demonstrate that polyP is unable to accelerate the rate-limiting step of α-synuclein fibril formation but effectively nucleates fibril assembly once α-synuclein oligomers are formed. Binding of polyP to α-synuclein either during fibril formation or upon fibril maturation substantially alters fibril morphology and effectively reduces the ability of α-synuclein fibrils to interact with cell membranes. The effect of polyP appears to be α-synuclein fibril specific and successfully prevents the uptake of fibrils into neuronal cells. These results suggest that altering the polyP levels in the extracellular space might be a potential therapeutic strategy to prevent the spreading of the disease.


Asunto(s)
Polifosfatos/farmacología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Espacio Extracelular/metabolismo , Humanos , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
5.
Biophys J ; 117(4): 717-728, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31400913

RESUMEN

The aggregation and deposition of tau is a hallmark of a class of neurodegenerative diseases called tauopathies. Despite intensive study, cellular and molecular factors that trigger tau aggregation are not well understood. Here, we provide evidence for two mechanisms relevant to the initiation of tau aggregation in the presence of cytoplasmic polyphosphates (polyP): changes in the conformational ensemble of monomer tau and noncovalent cross-linking of multiple tau monomers. We identified conformational changes throughout full-length tau, most notably diminishment of long-range interactions between the termini coupled with compaction of the microtubule binding and proline- rich regions. We found that while the proline-rich and microtubule binding regions both contain polyP binding sites, the proline-rich region is a requisite for compaction of the microtubule binding region upon binding. Additionally, both the magnitude of the conformational change and the aggregation of tau are dependent on the chain length of the polyP polymer. Longer polyP chains are more effective at intermolecular, noncovalent cross-linking of tau. These observations provide an understanding of the initial steps of tau aggregation through interaction with a physiologically relevant aggregation inducer.


Asunto(s)
Polifosfatos/química , Agregado de Proteínas , Proteínas tau/química , Sitios de Unión , Humanos , Microtúbulos/metabolismo , Mutación , Polifosfatos/metabolismo , Dominios Proteicos Ricos en Prolina , Unión Proteica , Imagen Individual de Molécula , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...