Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(3): eadh2579, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241363

RESUMEN

Although BRCA1/2 mutations are not commonly found in small cell lung cancer (SCLC), a substantial fraction of SCLC shows clinically relevant response to PARP inhibitors (PARPis). However, the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in SCLC cells. We found that the vulnerability of SCLC to PARPi could be explained by the degradation of lineage-specific oncoproteins (e.g., ASCL1). PARPi-induced activation of the E3 ligase HUWE1 mediated the ubiquitin-proteasome system (UPS)-dependent ASCL1 degradation. Although PARPi induced a general DNA damage response in SCLC cells, this signal generated a cell-specific response in ASCL1 degradation, leading to the identification of HUWE1 expression as a predictive biomarker for PARPi. Combining PARPi with agents targeting these pathways markedly improved therapeutic response in SCLC. The degradation of lineage-specific oncoproteins therefore represents a previously unidentified mechanism for PARPi efficacy in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína BRCA1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteómica , Proteína BRCA2/genética , Proteínas Oncogénicas , Línea Celular Tumoral , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética
2.
Front Oncol ; 13: 1025443, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035141

RESUMEN

The glucocorticoid receptor (GR) is an important anti-cancer target in lymphoid cancers but has been understudied in solid tumors like lung cancer, although glucocorticoids are often given with chemotherapy regimens to mitigate side effects. Here, we identify a dexamethasone-GR mediated anti-cancer response in a subset of aggressive non-small cell lung cancers (NSCLCs) that harbor Serine/Threonine Kinase 11 (STK11/LKB1) mutations. High tumor expression of carbamoyl phosphate synthase 1 (CPS1) was strongly linked to the presence of LKB1 mutations, was the best predictor of NSCLC dexamethasone (DEX) sensitivity (p < 10-16) but was not mechanistically involved in DEX sensitivity. Subcutaneous, orthotopic and metastatic NSCLC xenografts, biomarker-selected, STK11/LKB1 mutant patient derived xenografts, and genetically engineered mouse models with KRAS/LKB1 mutant lung adenocarcinomas all showed marked in vivo anti-tumor responses with the glucocorticoid dexamethasone as a single agent or in combination with cisplatin. Mechanistically, GR activation triggers G1/S cell cycle arrest in LKB1 mutant NSCLCs by inducing the expression of the cyclin-dependent kinase inhibitor, CDKN1C/p57(Kip2). All findings were confirmed with functional genomic experiments including CRISPR knockouts and exogenous expression. Importantly, DEX-GR mediated cell cycle arrest did not interfere with NSCLC radiotherapy, or platinum response in vitro or with platinum response in vivo. While DEX induced LKB1 mutant NSCLCs in vitro exhibit markers of cellular senescence and demonstrate impaired migration, in vivo DEX treatment of a patient derived xenograft (PDX) STK11/LKB1 mutant model resulted in expression of apoptosis markers. These findings identify a previously unknown GR mediated therapeutic vulnerability in STK11/LKB1 mutant NSCLCs caused by induction of p57(Kip2) expression with both STK11 mutation and high expression of CPS1 as precision medicine biomarkers of this vulnerability.

3.
Cancer Res ; 81(7): 1813-1826, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495232

RESUMEN

Small cell lung cancer (SCLC) is a pulmonary neuroendocrine cancer with very poor prognosis and limited effective therapeutic options. Most patients are diagnosed at advanced stages, and the exact reason for the aggressive and metastatic phenotype of SCLC is completely unknown. Despite a high tumor mutational burden, responses to immune checkpoint blockade are minimal in patients with SCLC. This may reflect defects in immune surveillance. Here we illustrate that evading natural killer (NK) surveillance contributes to SCLC aggressiveness and metastasis, primarily through loss of NK-cell recognition of these tumors by reduction of NK-activating ligands (NKG2DL). SCLC primary tumors expressed very low level of NKG2DL mRNA and SCLC lines express little to no surface NKG2DL at the protein level. Chromatin immunoprecipitation sequencing showed NKG2DL loci in SCLC are inaccessible compared with NSCLC, with few H3K27Ac signals. Restoring NKG2DL in preclinical models suppressed tumor growth and metastasis in an NK cell-dependent manner. Likewise, histone deacetylase inhibitor treatment induced NKG2DL expression and led to tumor suppression by inducing infiltration and activation of NK and T cells. Among all the common tumor types, SCLC and neuroblastoma were the lowest NKG2DL-expressing tumors, highlighting a lineage dependency of this phenotype. In conclusion, these data show that epigenetic silencing of NKG2DL results in a lack of stimulatory signals to engage and activate NK cells, highlighting the underlying immune avoidance of SCLC and neuroblastoma. SIGNIFICANCE: This study discovers in SCLC and neuroblastoma impairment of an inherent mechanism of recognition of tumor cells by innate immunity and proposes that this mechanism can be reactivated to promote immune surveillance.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Escape del Tumor/fisiología , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Células HEK293 , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Desnudos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Metástasis de la Neoplasia , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/patología , Escape del Tumor/genética
4.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33079728

RESUMEN

MYC stimulates both metabolism and protein synthesis, but how cells coordinate these complementary programs is unknown. Previous work reported that, in a subset of small-cell lung cancer (SCLC) cell lines, MYC activates guanosine triphosphate (GTP) synthesis and results in sensitivity to inhibitors of the GTP synthesis enzyme inosine monophosphate dehydrogenase (IMPDH). Here, we demonstrated that primary MYChi human SCLC tumors also contained abundant guanosine nucleotides. We also found that elevated MYC in SCLCs with acquired chemoresistance rendered these otherwise recalcitrant tumors dependent on IMPDH. Unexpectedly, our data indicated that IMPDH linked the metabolic and protein synthesis outputs of oncogenic MYC. Coexpression analysis placed IMPDH within the MYC-driven ribosome program, and GTP depletion prevented RNA polymerase I (Pol I) from localizing to ribosomal DNA. Furthermore, the GTPases GPN1 and GPN3 were upregulated by MYC and directed Pol I to ribosomal DNA. Constitutively GTP-bound GPN1/3 mutants mitigated the effect of GTP depletion on Pol I, protecting chemoresistant SCLC cells from IMPDH inhibition. GTP therefore functioned as a metabolic gate tethering MYC-dependent ribosome biogenesis to nucleotide sufficiency through GPN1 and GPN3. IMPDH dependence is a targetable vulnerability in chemoresistant MYChi SCLC.


Asunto(s)
Guanosina Trifosfato/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribosomas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Animales , Línea Celular Tumoral , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Ribosomas/genética , Ribosomas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología
5.
Cell Rep ; 33(3): 108296, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086069

RESUMEN

CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and genomic data, including high-resolution methylome and transcriptome from 118 patient-derived small cell lung cancer (SCLC) cell lines, providing a resource for research into this "recalcitrant cancer." We demonstrate the reproducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.


Asunto(s)
Minería de Datos/métodos , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Algoritmos , Línea Celular Tumoral , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Genómica/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fenómenos Farmacológicos y Toxicológicos , Reproducibilidad de los Resultados , Programas Informáticos , Factores de Transcripción/genética
6.
Nat Commun ; 10(1): 3201, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324758

RESUMEN

Pulmonary neuroendocrine (NE) cancer, including small cell lung cancer (SCLC), is a particularly aggressive malignancy. The lineage-specific transcription factors Achaete-scute homolog 1 (ASCL1), NEUROD1 and POU2F3 have been reported to identify the different subtypes of pulmonary NE cancers. Using a large-scale mass spectrometric approach, here we perform quantitative secretome analysis in 13 cell lines that signify the different NE lung cancer subtypes. We quantify 1,626 proteins and identify IGFBP5 as a secreted marker for ASCL1High SCLC. ASCL1 binds to the E-box elements in IGFBP5 and directly regulates its transcription. Knockdown of ASCL1 decreases IGFBP5 expression, which, in turn, leads to hyperactivation of IGF-1R signaling. Pharmacological co-targeting of ASCL1 and IGF-1R results in markedly synergistic effects in ASCL1High SCLC in vitro and in mouse models. We expect that this secretome resource will provide the foundation for future mechanistic and biomarker discovery studies, helping to delineate the molecular underpinnings of pulmonary NE tumors.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/metabolismo , Tumores Neuroendocrinos/clasificación , Tumores Neuroendocrinos/metabolismo , Factores de Transcripción/metabolismo , Animales , Azepinas/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Factores de Transcripción de Octámeros/metabolismo , Proteómica , Pirazoles/farmacología , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Triazinas/farmacología , Triazoles/farmacología
7.
Nature ; 569(7756): E4, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31043737

RESUMEN

Further analysis has revealed that the signal reported in Extended Data Fig. 1c of this Letter is attributed to phosphorylethanolamine, not carbamoyl phosphate. A newly developed derivatization method revealed that the level of carbamoyl phosphate in these NSCLC extracts is below the detection threshold of approximately 10 nanomoles. These findings do not alter the overall conclusions of the Letter; see associated Amendment for full details. The Letter has not been corrected online.

8.
Cell Metab ; 28(3): 369-382.e5, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30043754

RESUMEN

Small cell lung cancer (SCLC) is a rapidly lethal disease with few therapeutic options. We studied metabolic heterogeneity in SCLC to identify subtype-selective vulnerabilities. Metabolomics in SCLC cell lines identified two groups correlating with high or low expression of the Achaete-scute homolog-1 (ASCL1) transcription factor (ASCL1High and ASCL1Low), a lineage oncogene. Guanosine nucleotides were elevated in ASCL1Low cells and tumors from genetically engineered mice. ASCL1Low tumors abundantly express the guanosine biosynthetic enzymes inosine monophosphate dehydrogenase-1 and -2 (IMPDH1 and IMPDH2). These enzymes are transcriptional targets of MYC, which is selectively overexpressed in ASCL1Low SCLC. IMPDH inhibition reduced RNA polymerase I-dependent expression of pre-ribosomal RNA and potently suppressed ASCL1Low cell growth in culture, selectively reduced growth of ASCL1Low xenografts, and combined with chemotherapy to improve survival in genetic mouse models of ASCL1Low/MYCHigh SCLC. The data define an SCLC subtype-selective vulnerability related to dependence on de novo guanosine nucleotide synthesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Guanosina/metabolismo , IMP Deshidrogenasa/fisiología , Neoplasias Pulmonares/enzimología , Carcinoma Pulmonar de Células Pequeñas/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Xenoinjertos , Humanos , IMP Deshidrogenasa/antagonistas & inhibidores , Ratones , Ratones Noqueados
9.
J Am Soc Mass Spectrom ; 28(10): 2078-2089, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28752479

RESUMEN

With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. Graphical Abstract ᅟ.


Asunto(s)
Biopsia con Aguja Gruesa , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Cromatografía Liquida , Regulación Neoplásica de la Expresión Génica , Humanos , Cinesinas/análisis , Cinesinas/genética , Cinesinas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Temperatura
10.
Nature ; 546(7656): 168-172, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28538732

RESUMEN

Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , ADN/biosíntesis , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Amoníaco/metabolismo , Animales , Bicarbonatos/metabolismo , Carbamoil-Fosfato Sintasa (Amoniaco)/deficiencia , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil Fosfato/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Muerte Celular , Proliferación Celular , Daño del ADN/efectos de los fármacos , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Silenciador del Gen , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Metabolómica , Ratones , Mitocondrias/metabolismo , Nitrógeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Purinas/metabolismo , Pirimidinas/farmacología , Fase S , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Proc Natl Acad Sci U S A ; 113(39): E5702-10, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621434

RESUMEN

Conventional chemotherapeutics nonselectively kill all rapidly dividing cells, which produces numerous side effects. To address this challenge, we report the discovery of functional polyesters that are capable of delivering siRNA drugs selectively to lung cancer cells and not to normal lung cells. Selective polyplex nanoparticles (NPs) were identified by high-throughput library screening on a unique pair of matched cancer/normal cell lines obtained from a single patient. Selective NPs promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells during the initial transfection period. When injected into tumor xenografts in mice, cancer-selective NPs were retained in tumors for over 1 wk, whereas nonselective NPs were cleared within hours. This translated to improved siRNA-mediated cancer cell apoptosis and significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively. Importantly, this work highlights that different cells respond differentially to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Because no targeting ligands are required, these functional polyester NPs provide an exciting alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies.


Asunto(s)
Técnicas de Transferencia de Gen , Neoplasias Pulmonares/terapia , Poliésteres/química , ARN Interferente Pequeño/metabolismo , Animales , Apoptosis , Carbocianinas , Línea Celular Tumoral , Proliferación Celular , Técnicas Químicas Combinatorias , Endocitosis , Silenciador del Gen , Humanos , Ratones , Nanopartículas/química , Ubiquitina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Rep ; 16(6): 1614-1628, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477280

RESUMEN

KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and ß-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and ß-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain.


Asunto(s)
Acilcoenzima A/metabolismo , Coenzima A Ligasas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Coenzima A Ligasas/metabolismo , Ácidos Grasos/metabolismo , Humanos , Ligasas/metabolismo , Metabolismo de los Lípidos/genética , Lipogénesis/fisiología , Neoplasias Pulmonares/metabolismo , Ratones Noqueados , Oxidación-Reducción
14.
J Proteome Res ; 15(2): 477-86, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26736068

RESUMEN

Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Espacio Extracelular/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Transformada , Línea Celular Tumoral , Movimiento Celular , Cromatografía Liquida , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Fenotipo , Pronóstico , Proteoma/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Espectrometría de Masas en Tándem , Transfección
15.
Cancer Prev Res (Phila) ; 9(1): 43-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26511490

RESUMEN

In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA), in cancer cells-undetectable in normal lung epithelium. NAA's cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA's cancer specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N = 577), with minimal expression in all nonmalignant lung tissues (N = 74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA's clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N = 13) in comparison with age-matched healthy controls (N = 21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression, and its extracellular secretion can be detected in blood. Cancer Prev Res; 9(1); 43-52. ©2015 AACR.


Asunto(s)
Acetiltransferasas/sangre , Ácido Aspártico/análogos & derivados , Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Acetiltransferasas/metabolismo , Adulto , Anciano , Ácido Aspártico/sangre , Barrera Hematoencefálica , Carcinoma de Pulmón de Células no Pequeñas/sangre , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/sangre , Masculino , Persona de Mediana Edad , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN
16.
Nat Genet ; 47(12): 1475-81, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26482881

RESUMEN

Tumors have high energetic and anabolic needs for rapid cell growth and proliferation, and the serine biosynthetic pathway was recently identified as an important source of metabolic intermediates for these processes. We integrated metabolic tracing and transcriptional profiling of a large panel of non-small cell lung cancer (NSCLC) cell lines to characterize the activity and regulation of the serine/glycine biosynthetic pathway in NSCLC. Here we show that the activity of this pathway is highly heterogeneous and is regulated by NRF2, a transcription factor frequently deregulated in NSCLC. We found that NRF2 controls the expression of the key serine/glycine biosynthesis enzyme genes PHGDH, PSAT1 and SHMT2 via ATF4 to support glutathione and nucleotide production. Moreover, we show that expression of these genes confers poor prognosis in human NSCLC. Thus, a substantial fraction of human NSCLCs activates an NRF2-dependent transcriptional program that regulates serine and glycine metabolism and is linked to clinical aggressiveness.


Asunto(s)
Adenocarcinoma/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Factor 2 Relacionado con NF-E2/genética , Serina/biosíntesis , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/secundario , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/secundario , Proliferación Celular , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Res ; 75(21): 4640-50, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26359453

RESUMEN

Metastasis is a multistep process requiring cancer cell signaling, invasion, migration, survival, and proliferation. These processes require dynamic modulation of cell surface proteins by endocytosis. Given this functional connection, it has been suggested that endocytosis is dysregulated in cancer. To test this, we developed In-Cell ELISA assays to measure three different endocytic pathways: clathrin-mediated endocytosis, caveolae-mediated endocytosis, and clathrin-independent endocytosis and compared these activities using two different syngeneic models for normal and oncogene-transformed human lung epithelial cells. We found that all endocytic activities were reduced in the transformed versus normal counterparts. However, when we screened 29 independently isolated non-small cell lung cancer (NSCLC) cell lines to determine whether these changes were systematic, we observed significant heterogeneity. Nonetheless, using hierarchical clustering based on their combined endocytic properties, we identified two phenotypically distinct clusters of NSCLCs. One co-clustered with mutations in KRAS, a mesenchymal phenotype, increased invasion through collagen and decreased growth in soft agar, whereas the second was enriched in cells with an epithelial phenotype. Interestingly, the two clusters also differed significantly in clathrin-independent internalization and surface expression of CD44 and CD59. Taken together, our results suggest that endocytotic alterations in cancer cells that affect cell surface expression of critical molecules have a significant influence on cancer-relevant phenotypes, with potential implications for interventions to control cancer by modulating endocytic dynamics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Endocitosis , Neoplasias Pulmonares/metabolismo , Antígenos CD59/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/patología , Caveolas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Clatrina/metabolismo , Colágeno/genética , Humanos , Receptores de Hialuranos/biosíntesis , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Proteínas Proto-Oncogénicas p21(ras)/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
18.
Mol Cancer Res ; 13(4): 784-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25573953

RESUMEN

UNLABELLED: Protein S-palmitoylation is a widespread and dynamic posttranslational modification that regulates protein-membrane interactions, protein-protein interactions, and protein stability. A large family of palmitoyl acyl transferases, termed the DHHC family due to the presence of a common catalytic motif, catalyzes S-palmitoylation; the role of these enzymes in cancer is largely unexplored. In this study, an RNAi-based screen targeting all 23 members of the DHHC family was conducted to examine the effects on the growth in non-small cell lung cancer (NSCLC). Interestingly, siRNAs directed against DHHC5 broadly inhibited the growth of multiple NSCLC lines but not normal human bronchial epithelial cell (HBEC) lines. Silencing of DHHC5 by lentivirus-mediated expression of DHHC5 shRNAs dramatically reduced in vitro cell proliferation, colony formation, and cell invasion in a subset of cell lines that were examined in further detail. The phenotypes were restored by transfection of a wild-type DHHC5 plasmid but not by a plasmid expressing a catalytically inactive DHHC5. Tumor xenograft formation was severely inhibited by DHHC5 knockdown and rescued by DHHC5 expression, using both a conventional and tetracycline-inducible shRNA. These data indicate that DHHC5 has oncogenic capacity and contributes to tumor formation in NSCLC, thus representing a potential novel therapeutic target. IMPLICATIONS: Inhibitors of DHHC5 enzyme activity may inhibit non-small cell lung cancer growth.


Asunto(s)
Aciltransferasas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Interferente Pequeño/metabolismo , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Trasplante de Neoplasias
19.
Cell Metab ; 20(4): 650-61, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25264247

RESUMEN

The nuclear receptor peroxisome-proliferation-activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers, including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell-cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or ß-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell-cycle progression of cancer cells by altering ROS levels.


Asunto(s)
PPAR gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Pioglitazona , Mapas de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Trasplante Heterólogo , Trimetazidina/farmacología , Trimetazidina/uso terapéutico
20.
Nat Genet ; 44(10): 1111-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22941189

RESUMEN

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein-coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.


Asunto(s)
Amplificación de Genes , Neoplasias Pulmonares/genética , Factores de Transcripción SOXB1/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Secuencia de Bases , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Exoma , Expresión Génica , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas de Fusión Oncogénica/genética , Proteínas Quinasas/genética , Factores de Transcripción SOXB1/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...