Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(13): 1764-1782.e8, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906138

RESUMEN

Sexually reproducing eukaryotes employ a developmentally regulated cell division program-meiosis-to generate haploid gametes from diploid germ cells. To understand how gametes arise, we generated a proteomic census encompassing the entire meiotic program of budding yeast. We found that concerted waves of protein expression and phosphorylation modify nearly all cellular pathways to support meiotic entry, meiotic progression, and gamete morphogenesis. Leveraging this comprehensive resource, we pinpointed dynamic changes in mitochondrial components and showed that phosphorylation of the FoF1-ATP synthase complex is required for efficient gametogenesis. Furthermore, using cryoET as an orthogonal approach to visualize mitochondria, we uncovered highly ordered filament arrays of Ald4ALDH2, a conserved aldehyde dehydrogenase that is highly expressed and phosphorylated during meiosis. Notably, phosphorylation-resistant mutants failed to accumulate filaments, suggesting that phosphorylation regulates context-specific Ald4ALDH2 polymerization. Overall, this proteomic census constitutes a broad resource to guide the exploration of the unique sequence of events underpinning gametogenesis.


Asunto(s)
Gametogénesis , Meiosis , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosforilación , Proteoma/metabolismo , Gametogénesis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteómica/métodos , Mitocondrias/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomycetales/metabolismo , Saccharomycetales/genética
2.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906101

RESUMEN

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Asunto(s)
Gametogénesis , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Coenzima A Ligasas/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Tomografía con Microscopio Electrónico , Meiosis , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporas Fúngicas/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína
4.
Nature ; 586(7830): 618-622, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814904

RESUMEN

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Asunto(s)
Intercambio Genético , Endonucleasas/metabolismo , Meiosis , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos/genética , Secuencia Conservada , ADN/metabolismo , División del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN Cruciforme/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/química , Proteínas MutL/química , Proteínas MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo
5.
Elife ; 92020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32149604

RESUMEN

Cryo-electron tomography (cryoET) has become a powerful technique at the interface of structural biology and cell biology, due to its unique ability for imaging cells in their native state and determining structures of macromolecular complexes in their cellular context. A limitation of cryoET is its restriction to relatively thin samples. Sample thinning by cryo-focused ion beam (cryoFIB) milling has significantly expanded the range of samples that can be analyzed by cryoET. Unfortunately, cryoFIB milling is low-throughput, time-consuming and manual. Here, we report a method for fully automated sequential cryoFIB preparation of high-quality lamellae, including rough milling and polishing. We reproducibly applied this method to eukaryotic and bacterial model organisms, and show that the resulting lamellae are suitable for cryoET imaging and subtomogram averaging. Since our method reduces the time required for lamella preparation and minimizes the need for user input, we envision the technique will render previously inaccessible projects feasible.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Técnicas de Preparación Histocitológica , Microtomía , Anabaena/ultraestructura , Saccharomyces cerevisiae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...