Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339006

RESUMEN

Climate change adversely affects the water and temperature conditions required for plant growth, leading to a decrease in yield. In high temperatures, oxidative stress causes cellular damage in plant cells, which is a negative factor for crop production. Thioredoxin (Trx) is a small redox protein containing a conserved WC(G/P)PC motif that catalyzes the exchange of disulfide bonds. It is known to play an important role in maintaining cellular redox homeostasis. Trx proteins are widely distributed across various subcellular locations, and they play a crucial role in responding to cellular stresses. In this study, seven CaTrxh-type genes present in pepper were identified and the CaTrxh-type family was classified into three subgroups. CaTrxh genes responded to heat stress. Moreover, subcellular locations of the CaTrxh family exhibited dynamic patterns in normal conditions, and we observed relocalizations in heat stress conditions. Each CaTrxh family protein member formed homo-/heteromeric protein complexes in BiFC assay. Unexpectedly, subgroup III CaTrxh9 and CaTrxh10 can recruit subgroup I and II CaTrxh proteins into the plasma membrane. Thus, the function of the CaTrxh-type family is expected to play a protective role in the cell in response to high-temperature stress via protein complex formations. CaTrxh may have potential applications in the development of crops with enhanced tolerance to oxidative stress.


Asunto(s)
Capsicum , Capsicum/metabolismo , Temperatura , Proteínas de Plantas/metabolismo , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
2.
Plants (Basel) ; 11(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365311

RESUMEN

Autophagy is an evolutionarily well-conserved cellular catabolic pathway in eukaryotic cells and plays an important role in cellular processes. Autophagy is regulated by autophagy-associated (ATG) proteins. Among these ATG proteins, the ubiquitin-like protein ATG8/LC3 is essential for autophagosome formation and function. In this study, the potato StATG8 family showed clade I and clade II with significantly different sequences. Expression of the StATG8 family was also increased in senescence. Interestingly, the expression of the StATG8 and other core StATG genes decreased in potato tubers as the tubers matured. The StATG8 family also responded to a variety of stresses such as heat, wounding, salicylic acid, and salt stress. We also found that some Arabidopsis WRKY transcription factors interacted with the StATG8 protein in planta. Based on group II-a WRKY, StATG8-WRKY interaction is independent of the ATG8 interacting motif (AIM) or LC3 interacting region (LIR) motif. This study showed that the StATG8 family had diverse functions in tuber maturation and multiple stress responses in potatoes. Additionally, StATG8 may have an unrelated autophagy function in the nucleus with the WRKY transcription factor.

4.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562978

RESUMEN

Caspase is a well-studied metazoan protease involved in programmed cell death and immunity in animals. Obviously, homologues of caspases with evolutionarily similar sequences and functions should exist in plants, and yet, they do not exist in plants. Plants contain structural homologues of caspases called metacaspases, which differ from animal caspases in a rather distinct way. Metacaspases, a family of cysteine proteases, play critical roles in programmed cell death during plant development and defense responses. Plant metacaspases are further subdivided into types I, II, and III. In the type I Arabidopsis MCs, AtMC1 and AtMC2 have similar structures, but antagonistically regulate hypersensitive response cell death upon immune receptor activation. This regulatory action is similar to caspase-1 inhibition by caspase-12 in animals. However, so far very little is known about the biological function of the other plant metacaspases. From the increased availability of genomic data, the number of metacaspases in the genomes of various plant species varies from 1 in green algae to 15 in Glycine max. It is implied that the functions of plant metacaspases will vary due to these diverse evolutions. This review is presented to comparatively analyze the evolution and function of plant metacaspases compared to caspases.


Asunto(s)
Arabidopsis , Caspasas , Animales , Apoptosis , Arabidopsis/metabolismo , Caspasas/metabolismo , Muerte Celular , Plantas/genética , Plantas/metabolismo
5.
Plant Methods ; 18(1): 57, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501866

RESUMEN

BACKGROUND: The study of the regulatory mechanisms of evolutionarily conserved Nucleotide-binding leucine-rich repeat (NLR) resistance (R) proteins in animals and plants is of increasing importance due to understanding basic immunity and the value of various crop engineering applications of NLR immune receptors. The importance of temperature is also emerging when applying NLR to crops responding to global climate change. In particular, studies of pathogen effector recognition and autoimmune activity of NLRs in plants can quickly and easily determine their function in tobacco using agro-mediated transient assay. However, there are conditions that should not be overlooked in these cell death-related assays in tobacco. RESULTS: Environmental conditions play an important role in the immune response of plants. The system used in this study was to establish conditions for optimal hypertensive response (HR) cell death analysis by using the paired NLR RPS4/RRS1 autoimmune and AvrRps4 effector recognition system. The most suitable greenhouse temperature for growing plants was fixed at 22 °C. In this study, RPS4/RRS1-mediated autoimmune activity, RPS4 TIR domain-dependent cell death, and RPS4/RRS1-mediated HR cell death upon AvrRps4 perception significantly inhibited under conditions of 65% humidity. The HR is strongly activated when the humidity is below 10%. Besides, the leaf position of tobacco is important for HR cell death. Position #4 of the leaf from the top in 4-5 weeks old tobacco plants showed the most effective HR cell death. CONCLUSIONS: As whole genome sequencing (WGS) or resistance gene enrichment sequencing (RenSeq) of various crops continues, different types of NLRs and their functions will be studied. At this time, if we optimize the conditions for evaluating NLR-mediated HR cell death, it will help to more accurately identify the function of NLRs. In addition, it will be possible to contribute to crop development in response to global climate change through NLR engineering.

6.
Plant Signal Behav ; 17(1): 2027137, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35192782

RESUMEN

Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.


Asunto(s)
Capsicum , Capsicum/genética , Capsicum/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
Biomolecules ; 11(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34944494

RESUMEN

Eukaryotic organisms have a posttranscriptional/translational regulation system for the control of translational efficiency. RNA binding proteins (RBPs) have been known to control target genes. One type of protein, Pumilio (Pum)/Puf family RNA binding proteins, show a specific binding of 3' untranslational region (3' UTR) of target mRNA and function as a post-transcriptional/translational regulator in eukaryotic cells. Plant Pum protein is involved in development and biotic/abiotic stresses. Interestingly, Arabidopsis Pum can control target genes in a sequence-specific manner and rRNA processing in a sequence-nonspecific manner. As shown in in silico Pum gene expression analysis, Arabidopsis and rice Pum genes are responsive to biotic/abiotic stresses. Plant Pum can commonly contribute to host gene regulation at the post-transcriptional/translational step, as can mammalian Pum. However, the function of plant Pum proteins is not yet fully known. In this review, we briefly summarize the function of plant Pum in defense, development, and environmental responses via recent research and bioinformatics data.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Regulación de la Expresión Génica de las Plantas , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Estrés Fisiológico
8.
Plant Signal Behav ; 16(3): 1868131, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33369516

RESUMEN

Submergence and waterlogging lead to significant reductions in crop productivity and trigger dramatic changes in gene expression of plant biotic/abiotic stress response. Several of the host factors are involved in low-oxygen stress that is induced by endogenous reactive oxygen species (ROS) accumulation. Hypoxia-response unknown protein (HUP) has been found as a host factor of hypoxia screening but HUPs function largely is unknown. In this study, we found the Arabidopsis HUP26 gene which was conserved in different plant species and responded to various oxidative stress. HUP26 promoter analysis showed GUS activity in root and leaf tissues was significantly responsive to oxidative stress. HUP26-GFP is predominantly located in the cytoplasmic region. HUP26 overexpression results in altered enhanced pathogenesis-related gene 1 gene expression and reduced ion leakage levels compared with hup26 knockout and WT plants after inoculation with Pst DC3000. HUP26 overexpression transgenic plants showed improved resistance to Pst DC3000, but hup26 knockout plants exhibited increased susceptibility. Collectively, these results indicate that HUP26 plays important role in responses to various oxidative stress and confers biotic stress resistance. Engineering of HUP26 gene expression may represent a strategy to enhance biotic stress resistance of crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Estrés Fisiológico , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hipoxia/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Estrés Oxidativo , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Pseudomonas syringae/fisiología , Estrés Fisiológico/genética
9.
Plant Signal Behav ; 16(12): 2017631, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34978271

RESUMEN

Plant pathogenic bacteria inject many of the effector proteins into host cell to manipulate host protein and promote pathogen development. Only a few effectors can be recognized by plant immune receptors called nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs). Enhanced disease susceptibility1 (EDS1) is an important regulator of plant basal and NLR receptor-triggered immunity. EDS1/PAD4 or EDS1/SAG101 heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilize resistance pathways. Type III effector PopP2 contributes to Ralstonia solanacearum virulence. PopP2 has an acetyltransferase activity and is recognized by Arabidopsis NLR pair RPS4/RRS1-R. On the other hand, PopP2 avirulence function is dependent on its enzymatic activity but target proteins in the host cell are still largely unknown. In this study, we found EDS1 and PAD4 are new host targets of PopP2 effector. Arabidopsis PAD4 lipase-like domain protein physically associates with enzymatic active PopP2 protein but not inactive PopP2C321A. PAD4-PopP2 interaction is disrupted by EDS1 immune regulator but not SAG101. We propose that acetyltransferase activity of PopP2 might confer specificity to PAD4 to manipulate plant immunity. As a counter strategy, EDS1 associates with PAD4 to form heterodimeric immune regulator complexes for activating basal resistance and interfering PopP2 physical interaction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Hidrolasas de Éster Carboxílico/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética
10.
Proc Natl Acad Sci U S A ; 117(31): 18832-18839, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32709746

RESUMEN

Plant and animal intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors detect pathogen-derived molecules and activate defense. Plant NLRs can be divided into several classes based upon their N-terminal signaling domains, including TIR (Toll-like, Interleukin-1 receptor, Resistance protein)- and CC (coiled-coil)-NLRs. Upon ligand detection, mammalian NAIP and NLRC4 NLRs oligomerize, forming an inflammasome that induces proximity of its N-terminal signaling domains. Recently, a plant CC-NLR was revealed to form an inflammasome-like hetero-oligomer. To further investigate plant NLR signaling mechanisms, we fused the N-terminal TIR domain of several plant NLRs to the N terminus of NLRC4. Inflammasome-dependent induced proximity of the TIR domain in planta initiated defense signaling. Thus, induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate authentic plant defense. Ligand detection and inflammasome formation is maintained when the known components of the NLRC4 inflammasome is transferred across kingdoms, indicating that NLRC4 complex can robustly function without any additional mammalian proteins. Additionally, we found NADase activity of a plant TIR domain is necessary for plant defense activation, but NADase activity of a mammalian or a bacterial TIR is not sufficient to activate defense in plants.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Transducción de Señal , Animales , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Mamíferos , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
11.
Proc Natl Acad Sci U S A ; 114(28): E5712-E5720, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652324

RESUMEN

Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinereaAtABCG34 expression was induced by Abrassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in Athaliana, whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents Abrassicicola infection.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Alternaria/patogenicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Botrytis/metabolismo , Indoles/metabolismo , Enfermedades de las Plantas/microbiología , Tiazoles/metabolismo , Acetatos/farmacología , Arabidopsis/metabolismo , Transporte Biológico , Ciclopentanos/farmacología , Diterpenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Oxilipinas/farmacología , Fenotipo , Filogenia , Hojas de la Planta/metabolismo , Transducción de Señal
12.
PLoS Pathog ; 13(5): e1006376, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475615

RESUMEN

Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas NLR/genética , Proteínas NLR/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Mapeo de Interacción de Proteínas , Receptores Inmunológicos/genética , Plantones/citología , Plantones/genética , Plantones/inmunología , Plantones/fisiología , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo
13.
Bioessays ; 38(8): 769-81, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27339076

RESUMEN

Intracellular NLR (Nucleotide-binding domain and Leucine-rich Repeat-containing) receptors are sensitive monitors that detect pathogen invasion of both plant and animal cells. NLRs confer recognition of diverse molecules associated with pathogen invasion. NLRs must exhibit strict intramolecular controls to avoid harmful ectopic activation in the absence of pathogens. Recent discoveries have elucidated the assembly and structure of oligomeric NLR signalling complexes in animals, and provided insights into how these complexes act as scaffolds for signal transduction. In plants, recent advances have provided novel insights into signalling-competent NLRs, and into the myriad strategies that diverse plant NLRs use to recognise pathogens. Here, we review recent insights into the NLR biology of both animals and plants. By assessing commonalities and differences between kingdoms, we are able to develop a more complete understanding of NLR function.


Asunto(s)
Inmunidad Innata , Infecciones/metabolismo , Proteínas NLR/fisiología , Plantas/metabolismo , Transducción de Señal , Animales , Infecciones/inmunología , Plantas/inmunología , Plantas/microbiología
14.
Cell ; 161(5): 1089-1100, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000484

RESUMEN

Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas Bacterianas/inmunología , Inmunidad Innata , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/patogenicidad , Pseudomonas syringae/inmunología , Pseudomonas syringae/metabolismo , Nicotiana/inmunología , Nicotiana/microbiología
15.
Sci Rep ; 5: 7981, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613640

RESUMEN

Plants are constantly exposed to pathogens and environmental stresses. To minimize damage caused by these potentially harmful factors, plants respond by massive transcriptional reprogramming of various stress-related genes via major transcription factor families. One of the transcription factor families, WRKY, plays an important role in diverse stress response of plants and is often useful to generate genetically engineered crop plants. In this study, we carried out functional characterization of CaWRKYa encoding group I WRKY member, which is induced during hypersensitive response (HR) in hot pepper (Capsicum annuum) upon Tobacco mosaic virus (TMV) infection. CaWRKYa was involved in L-mediated resistance via transcriptional reprogramming of pathogenesis-related (PR) gene expression and affected HR upon TMV-P0 infection. CaWRKYa acts as a positive regulator of this defense system and could bind to the W-box of diverse PR genes promoters. Furthermore, we found Capsicum annuum mitogen-activated protein kinase 1 (CaMK1) and 2 (CaMK2) interacted with CaWRKYa and phosphorylated the SP clusters but not the MAPK docking (D)-domain of CaWRKYa. Thus, these results demonstrated that CaWRKYa was regulated by CaMK1 and CaMK2 at the posttranslational level in hot pepper.


Asunto(s)
Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Capsicum , Proteínas de Plantas , Virus del Mosaico del Tabaco/metabolismo , Factores de Transcripción , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Capsicum/genética , Capsicum/metabolismo , Capsicum/virología , Enfermedades de las Plantas/virología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Sci ; 227: 76-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25219309

RESUMEN

Programmed cell death (PCD) is an integral component of plant development and adaptation under adverse environmental conditions. Reactive oxygen species (ROS) are one of the most important players that trigger PCD in plants, and ROS-generating machinery is activated in plant cells undergoing PCD. The membrane-bound NAC transcription factor NTL4 has recently been proven to facilitate ROS production in response to drought stress in Arabidopsis. In this work, we show that NTL4 participates in a positive feedback loop that bursts ROS accumulation to modulate PCD under heat stress conditions. Heat stress induces NTL4 gene transcription and NTL4 protein processing. The level of hydrogen peroxide (H2O2) was elevated in 35S:4ΔC transgenic plants that overexpress a transcriptionally active nuclear NTL4 form but significantly reduced in NTL4-deficient ntl4 mutants under heat stress conditions. In addition, heat stress-induced cell death was accelerated in the 35S:4ΔC transgenic plants but decreased in the ntl4 mutants. Notably, H2O2 triggers NTL4 gene transcription and NTL4 protein processing under heat stress conditions. On the basis of these findings, we conclude that NTL4 modulates PCD through a ROS-mediated positive feedback control under heat stress conditions, possibly providing an adaptation strategy by which plants ensure their survival under extreme heat stress conditions.


Asunto(s)
Adaptación Fisiológica/genética , Apoptosis/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calor , Estrés Fisiológico/genética , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
17.
BMC Plant Biol ; 14: 75, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24666827

RESUMEN

BACKGROUND: A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. RESULTS: APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3' untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3' UTR. CONCLUSIONS: These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3' UTRs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico/genética , Regiones no Traducidas 3'/genética , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Alternaria/efectos de los fármacos , Alternaria/fisiología , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Secuencia de Bases , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , Germinación/efectos de los fármacos , Germinación/genética , Glucuronidasa/metabolismo , Manitol/farmacología , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología , Proteínas de Unión al ARN/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
18.
Proc Natl Acad Sci U S A ; 110(2): 779-84, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23269841

RESUMEN

Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly, CMV RNA contained putative Pumilio-homology domain binding motifs in its 3' untranslated region (UTR) and internal places in its genome. APUM5 directly bound to the 3' UTR motifs and some internal binding motifs in CMV RNAs in vitro and in vivo. We showed that APUM5 acts as a translational repressor that regulates the 3' UTR of CMV and affects CMV replication. This study uncovered a unique defense system that Arabidopsis APUM5 specifically regulates CMV infection by the direct binding of CMV RNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cucumovirus/metabolismo , Enfermedades de las Plantas/virología , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Southern Blotting , Cucumovirus/genética , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica de las Plantas/genética , Glucuronidasa/metabolismo , Técnicas Histológicas , Inmunoprecipitación , Datos de Secuencia Molecular , Enfermedades de las Plantas/inmunología , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
Front Physiol ; 4: 397, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24427141

RESUMEN

Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppress RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

20.
J Neurosci ; 32(48): 17241-50, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197716

RESUMEN

Mutations in VAPB have been identified in a familial form of amyotrophic lateral sclerosis (ALS), and reduced VAPB levels have been found in patients with sporadic ALS. Vap protein family members from different species and cell types have been implicated in a number of cellular functions, but how Vap dysfunction in neurons and/or muscles contributes to motor neuron degeneration and death is poorly understood. Using Drosophila as a model organism, we show that Vap physically interacts with and affects the axonal functions of the Down syndrome cell adhesion molecule (Dscam). Dscam is a cell-surface receptor involved in axon and dendritic patterning and neuron self-recognition and avoidance. Alternative splicing of the Dscam transcript leads to the production of Dscam isoforms that contain one of two possible transmembrane (TM) domain and flanking sequences that either restrict the isoform to dendrites and cell bodies (TM1) or target the isoform to axon processes (TM2). We find that Vap specifically interacts with Dscam isoforms that contain the TM2 cytoplasmic juxtamembrane flanking sequences. Using loss-of-function genetics, we further show that Vap is required for localization of Dscam isoforms containing TM2 to axons and that Vap loss suppresses Dscam gain-of-function axon phenotypes. We propose that Vap function is required in neurons to selectively traffic proteins to axons, and disruption of this function may contribute to the pathology of ALS.


Asunto(s)
Axones/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/genética , Moléculas de Adhesión Celular/genética , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Neuronas/metabolismo , Isoformas de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...