Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Adv Mater ; : e2407822, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104291

RESUMEN

Spin-crossover (SCO) ferroelectrics with dual-function switches have attracted great attention for significant magnetoelectric application prospects. However, the multiferroic crystals with SCO features have rarely been reported. Herein, a molecular multiferroic Fe(II) crystalline complex [FeII(C8-F-pbh)2] (1-F, C8-F-pbh = (1Z,N'E)-3-F-4-(octyloxy)-N'-(pyridin-2-ylmethylene)-benzo-hydrazonate) showing the coexistence of ferroelectricity, ferroelasticity, and SCO behavior is presented for the first time. By H/F substitution, the low phase transition temperature (270 K) of the non-fluorinated parent compound is significantly increased to 318 K in 1-F, which exhibits a spatial symmetry breaking 222F2 type ferroelectric phase transition with clear room-temperature ferroelectricity. Besides, 1-F also displays a spin transition between high- and low-spin states, accompanied by the d-orbital breaking within the t2g 4eg 2 and t2g 6eg° configuration change of octahedrally coordinated FeII center. Moreover, the 222F2 type ferroelectric phase transition is also a ferroelastic one, verified by the ferroelectric domains reversal and the evolution of ferroelastic domains. To the knowledge, 1-F is the first multiferroic SCO molecular crystal. This unprecedented finding sheds light on the exploration of molecular multistability materials for future smart devices.

2.
Indian J Otolaryngol Head Neck Surg ; 76(4): 3018-3030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39130301

RESUMEN

Nasal surgeries (e.g.: rhinoplasties, septoplasties) and sinus surgeries (e.g.: Functional Endoscopic Sinus Surgeries) are common procedures in Otorhinolaryngology. Tranexamic acid (TXA), an antifibrinolytic drug, has been increasingly utilized to reduce hemorrhage recently. While close in proximity anatomically, the bleeding nature of sinus and nasal surgeries may differ. We present the first meta-analysis that has reviewed both nasal and sinus surgery collectively and compares the two. Pubmed, Embase, Cochrane Library and WoS were searched until April 2023. Outcomes of interest include Boezart Scoring, clotting time, postoperative complications and surgical field quality. 27 Studies were assessed, of which 25 studies were evaluated quantitatively. Of the 27 studies, 15 studies involved Sinus surgery while 12 involved Nasal surgery. The use of tranexamic acid was notably beneficial in the evaluation of blood loss, reduction of operating time, surgical field quality and surgeon satisfaction. TXA has proven to be efficacious in both nasal and sinus surgeries to varying degrees. TXA has more effects in sinus surgeries compared to nasal surgeries in objective markers such as reducing blood loss and operating time, but the converse occurs for subjective markers such as surgeon satisfaction scores. Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-024-04579-x.

3.
Adv Mater ; : e2405981, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970528

RESUMEN

Ferroelectric materials, traditionally comprising inorganic ceramics and polymers, are commonly used in medical implantable devices. However, their nondegradable nature often necessitates secondary surgeries for removal. In contrast, ferroelectric molecular crystals have the advantages of easy solution processing, lightweight, and good biocompatibility, which are promising candidates for transient (short-term) implantable devices. Despite these benefits, the discovered biodegradable ferroelectric materials remain limited due to the absence of efficient design strategies. Here, inspired by the polar structure of polyvinylidene fluoride (PVDF), a ferroelectric molecular crystal 1H,1H,9H,9H-perfluoro-1,9-nonanediol (PFND), which undergoes a cubic-to-monoclinic ferroelectric plastic phase transition at 339 K, is discovered. This transition is facilitated by a 2D hydrogen bond network formed through O-H···O interactions among the oriented PFND molecules, which is crucial for the manifestation of ferroelectric properties. In this sense, by reducing the number of -CF2- groups from ≈5 000 in PVDF to seven in PFND, it is demonstrated that this ferroelectric compound only needs simple solution processing while maintaining excellent biosafety, biocompatibility, and biodegradability. This work illuminates the path toward the development of new biodegradable ferroelectric molecular crystals, offering promising avenues for biomedical applications.

4.
Phytochem Anal ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037036

RESUMEN

INTRODUCTION: Marsdeniae tenacissimae Caulis (MTC), a popular traditional Chinese medicine, has been widely used in the treatment of tumor diseases. Paederiae scandens Caulis (PSC), which is similar in appearance to MTC, is a common counterfeit product. It is difficult for traditional methods to effectively distinguish between MTC and PSC. Therefore, there is an urgent need for a rapid and accurate method to identify MTC and PSC. OBJECTIVES: The aim is to distinguish between MTC and PSC by analyzing the differences in nonvolatile organic compounds (NVOCs), taste, odor, and volatile organic compounds (VOCs). METHODS: Liquid chromatography-mass spectrometry (LC-MS) was utilized to analyze the NVOCs of MTC and PSC. Electronic tongue (E-tongue) and electronic nose (E-nose) were used to analyze their taste and odor respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) was applied to analyze VOCs. Finally, multivariate statistical analyses were conducted to further investigate the differences between MTC and PSC, including principal component analysis, orthogonal partial least squares discriminant analysis, discriminant factor analysis, and soft independent modeling of class analysis. RESULTS: The results of this study indicate that the integrated strategy of LC-MS, E-tongue, E-nose, GC-IMS, and multivariate statistical analysis can be effectively applied to distinguish between MTC and PSC. Using LC-MS, 25 NVOCs were identified in MTC, while 18 NVOCs were identified in PSC. The major compounds in MTC are steroids, while the major compounds in PSC are iridoid glycosides. Similarly, the distinct taste difference between MTC and PSC was precisely revealed by the E-tongue. Specifically, the pronounced bitterness in PSC was proven to stem from iridoid glycosides, whereas the bitterness evident in MTC was intimately tied to steroids. The E-nose detected eight odor components in MTC and six in PSC, respectively. The subsequent statistical analysis uncovered notable differences in their odor profiles. GC-IMS provided a visual representation of the differences in VOCs between MTC and PSC. The results indicated a relatively high relative content of 82 VOCs in MTC, contrasted with 32 VOCs exhibiting a similarly high relative content in PSC. CONCLUSION: In this study, for the first time, the combined use of LC-MS, E-tongue, E-nose, GC-IMS, and multivariate statistical analysis has proven to be an effective method for distinguishing between MTC and PSC from multiple perspectives. This approach provides a valuable reference for the identification of other visually similar traditional Chinese medicines.

5.
J Agric Food Chem ; 72(31): 17328-17342, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39045647

RESUMEN

Zanthoxyli radix is a popular tea among the elderly, and it is believed to have a positive effect on Alzheimer's disease. In this study, a highly effective three-step strategy was proposed for comprehensive analysis of the active components and biological functions of Zanthoxylum nitidum (ZN), including high-resolution LC-Q-TOF mass spectrometry (HRMS), multivariate statistical analysis for heterogeneity (MSAH), and experimental and virtual screening for bioactivity analysis (EVBA). A total of 117 compounds were identified from the root, stem, and leaf of ZN through HRMS. Bioactivity assays showed that the order of acetylcholinesterase (AChE) inhibitory activity from strong to weak was root > stem > leaf. Nitidine, chelerythrine, and sanguinarine were found to be the main differential components of root, stem, and leaf by OPLS-DA. The IC50 values of the three compounds are 0.81 ± 0.02, 0.14 ± 0.01, and 0.48 ± 0.01 µM respectively, indicating that they are potent and high-quality AChE inhibitors. Molecular docking showed that pi-pi T-shaped interactions and pi-lone pairs played important roles in AChE inhibition. This study not only explains the biological function of Zanthoxyli radix in alleviating Alzheimer's disease to some extent, but also lays the foundation for the development of stem and leaf of ZN.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Hojas de la Planta , Zanthoxylum , Zanthoxylum/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Tallos de la Planta/química , Cromatografía Líquida de Alta Presión , Humanos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología
6.
Front Bioeng Biotechnol ; 12: 1395540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055341

RESUMEN

Acetogenic bacteria (acetogens) are a class of microorganisms with conserved Wood-Ljungdahl pathway that can utilize CO and CO2/H2 as carbon source for autotrophic growth and convert these substrates to acetate and ethanol. Acetogens have great potential for the sustainable production of biofuels and bulk biochemicals using C1 gases (CO and CO2) from industrial syngas and waste gases, which play an important role in achieving carbon neutrality. In recent years, with the development and improvement of gene editing methods, the metabolic engineering of acetogens is making rapid progress. With introduction of heterogeneous metabolic pathways, acetogens can improve the production capacity of native products or obtain the ability to synthesize non-native products. This paper reviews the recent application of metabolic engineering in acetogens. In addition, the challenges of metabolic engineering in acetogens are indicated, and strategies to address these challenges are also discussed.

7.
BMC Ophthalmol ; 24(1): 270, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914965

RESUMEN

BACKGROUND: This study aimed to explore differences in vitreous humour metabolites and metabolic pathways between patients with and without diabetic retinopathy (DR) and identify potential metabolite biomarkers. METHODS: Clinical data and vitreous fluid samples were collected from 125 patients (40 without diabetes, 85 with DR). The metabolite profiles of the vitreous fluid samples were analysed using ultra-high performance liquid chromatography, Q-Exactive mass spectrometry, and multivariate statistical analysis. A machine learning model based on Least Absolute Shrinkage and Selection Operator Regularized logistic regression was used to build a risk scoring model based on selected metabolite levels. Candidate metabolites were regressed to glycated haemoglobin levels by a logistic regression model. RESULTS: Twenty differential metabolites were identified between the DR and control groups and were significantly enriched in five Kyoto Encyclopedia of Genes and Genomes pathways (arginine biosynthesis; tricarboxylic acid cycle; alanine, aspartate, and glutamate metabolism; tyrosine metabolism; and D-glutamate metabolism). Ferrous ascorbate significantly contributes to poorer glycaemic control outcomes, offering insights into potential new pathogenic pathways in DR. CONCLUSIONS: Disorders in the metabolic pathways of arginine biosynthesis, tricarboxylic acid cycle, alanine, aspartate, glutamate metabolism, tyrosine metabolism, and D-glutamate metabolism were associated with DR. Risk scores based on vitreous fluid metabolites can be used for the diagnosis and management of DR. Ferrous ascorbate can provide insights into potential new pathogenic pathways for DR.


Asunto(s)
Ácido Ascórbico , Biomarcadores , Retinopatía Diabética , Metabolómica , Cuerpo Vítreo , Humanos , Retinopatía Diabética/metabolismo , Retinopatía Diabética/diagnóstico , Cuerpo Vítreo/metabolismo , Biomarcadores/metabolismo , Masculino , Metabolómica/métodos , Femenino , Persona de Mediana Edad , Ácido Ascórbico/metabolismo , Anciano , Cromatografía Líquida de Alta Presión
8.
Org Lett ; 26(20): 4229-4234, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38738828

RESUMEN

A copper-catalyzed [3 + 2] annulation of O-acyl oximes with 4-sulfonamidophenols is developed. The advantage of this method lies in the concurrent double activation of two substrates to form nucleophilic enamines and electrophilic quinone monoimines. The substituent on the α-carbon of O-acyl oxime determines two different reaction pathways, thereby leading to the selective generation of 5-sulfonamidoindoles and 2-amido-5-sulfonamidobenzofuran-3(2H)-ones.

9.
ACS Appl Mater Interfaces ; 16(19): 25065-25070, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712510

RESUMEN

Phase transition materials with switchable second-order nonlinear optical (NLO) properties have attracted extensive attention because of their great application potential in photoelectric switches, sensors, and modulators, while metal-free organics with NLO switchability near room temperature remain scarce. Herein, we report a hydrogen-bonded metal-free organic crystal, 2-methylpropan-2-aminium 2,2-dimethylpropanoate (1), exhibiting a room-temperature phase transition and favorable NLO switchability. Through investigations on its thermal anomalies, dielectric properties, and crystal structures, we uncover that 1 holds a near-room-temperature phase transition at 303 K from noncentrosymmetric point group C2v to centrosymmetric one D2h, which is attributed to the order-disorder transformations of both tert-butylamine cations and dimethylpropionic acid anions. Accompanied by symmetry change during the phase transition, 1 exhibits reversible and repeatable NLO "on-off" switchability with a desirable switching contrast ratio of ca. 19 between high and low NLO states. This discovery demonstrates a metal-free organic crystal with NLO switching behavior near room temperature, serving as a promising candidate in smart and ecofriendly photoelectric functional materials and devices.

10.
Fitoterapia ; 175: 105928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548027

RESUMEN

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.


Asunto(s)
Desoxiglucosa , Medicamentos Herbarios Chinos , Glioxal , Piruvaldehído , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Piruvaldehído/análisis , Cromatografía Líquida de Alta Presión , Desoxiglucosa/análogos & derivados , Desoxiglucosa/análisis , Glioxal/análisis , Diacetil/análisis , Estructura Molecular , Frutas/química , Plantas Medicinales/química , Semillas/química
11.
Int J Hematol ; 119(5): 564-572, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441775

RESUMEN

OBJECTIVE: To describe the features of ETV6::ABL1 AML as well as the clinical treatment and outcomes. METHODS: Clinical data were collected from three patients diagnosed with ETV6::ABL1 AML at Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital. Their clinical and laboratory features were analyzed, and the treatment process and outcomes were described. Ten reported cases of ETV6::ABL1 AML from the literature were also included for analysis. RESULTS: The median age of the patients was 34 years, and 2 patients were male. No patient had a history of blood disorders before diagnosis. After relapse, they were referred to our hospital, where the ETV6::ABL1 gene was detected. Unfortunately, Patient 1 died rapidly after leukemia relapse due to severe infection. Patients 2 and 3 received salvage therapy with a dasatinib-containing regimen, followed by allo-HSCT, and are currently alive and disease-free. CONCLUSION: ETV6::ABL1 is a rare but recurrent genetic aberration in AML, and the combined use of fluorescence in situ hybridization and PCR can better identify this fusion gene. Patients carrying ETV6::ABL1 have a high relapse rate and a poor prognosis. TKIs are a reasonable treatment option for this group, and allo-HSCT may be curative.


Asunto(s)
Proteína ETS de Variante de Translocación 6 , Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas c-ets , Proteínas Represoras , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Resultado del Tratamiento
12.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547269

RESUMEN

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Asunto(s)
Materiales Biocompatibles , Compuestos Férricos , Polímeros , Biodegradación Ambiental , Polímeros/química , Polímeros/metabolismo , Alcohol Polivinílico/química , Alcohol Polivinílico/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Electricidad , Animales , Ratas , Ratas Sprague-Dawley , Compuestos Férricos/química , Compuestos Férricos/metabolismo
13.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499055

RESUMEN

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Asunto(s)
Acetolactato Sintasa , Escherichia coli , Acetolactato Sintasa/química , Glucógeno Sintasa , Hidroxibutiratos , Piruvatos , Holoenzimas
14.
Blood Adv ; 8(7): 1639-1650, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38315878

RESUMEN

ABSTRACT: The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUT were associated with higher rates of CXCR4MUT (P < .05). Patients with CXCR4MUT (frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WT treated with BTKis. CXCR4NS was associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NS treated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUT or TP53MUT had worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes.


Asunto(s)
Adenina/análogos & derivados , Piperidinas , Pirazoles , Pirimidinas , Macroglobulinemia de Waldenström , Humanos , Macroglobulinemia de Waldenström/tratamiento farmacológico , Macroglobulinemia de Waldenström/genética , Factor 88 de Diferenciación Mieloide/genética , Biomarcadores
15.
Vaccines (Basel) ; 12(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400198

RESUMEN

Zika virus (ZIKV) is an emerging flavivirus that causes congenital syndromes including microcephaly and fetal demise in pregnant women. No commercial vaccines against ZIKV are currently available. We previously generated a chimeric ZIKV (ChinZIKV) based on the Chaoyang virus (CYV) by replacing the prME protein of CYV with that of a contemporary ZIKV strain GZ01. Herein, we evaluated this vaccine candidate in a mouse model and showed that ChinZIKV was totally safe in both adult and suckling immunodeficient mice. No viral RNA was detected in the serum of mice inoculated with ChinZIKV. All of the mice inoculated with ChinZIKV survived, while mice inoculated with ZIKV succumbed to infection in 8 days. A single dose of ChinZIKV partially protected mice against lethal ZIKV challenge. In contrast, all the control PBS-immunized mice succumbed to infection after ZIKV challenge. Our results warrant further development of ChinZIKV as a vaccine candidate in clinical trials.

16.
J Ginseng Res ; 48(1): 103-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223831

RESUMEN

Background: Ginseng (Panax ginseng Mayer) is an important natural medicine. However, a long culture period and challenging quality control requirements limit its further use. Although artificial cultivation can yield a sustainable medicinal supply, research on the association between the transplantation and chaining of metabolic networks, especially the regulation of ginsenoside biosynthetic pathways, is limited. Methods: Herein, we performed Liquid chromatography tandem mass spectrometry based metabolomic measurements to evaluate ginsenoside accumulation and categorise differentially abundant metabolites (DAMs). Transcriptome measurements using an Illumina Platform were then conducted to probe the landscape of genetic alterations in ginseng at various ages in transplantation mode. Using pathway data and crosstalk DAMs obtained by MapMan, we constructed a metabolic profile of transplantation Ginseng. Results: Accumulation of active ingredients was not obvious during the first 4 years (in the field), but following transplantation, the ginsenoside content increased significantly from 6-8 years (in the wild). Glycerolipid metabolism and Glycerophospholipid metabolism were the most significant metabolic pathways, as Lipids and lipid-like molecule affected the yield of ginsenosides. Starch and sucrose were the most active metabolic pathways during transplantation Ginseng growth. Conclusion: This study expands our understanding of metabolic network features and the accumulation of specific compounds during different growth stages of this perennial herbaceous plant when growing in transplantation mode. The findings provide a basis for selecting the optimal transplanting time.

17.
Adv Mater ; 36(8): e2307936, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37907064

RESUMEN

Ferroelectric lithography, which can purposefully control and pattern ferroelectric domains in the micro-/nanometer scale, has extensive applications in data memories, field-effect transistors, race-track memory, tunneling barriers, and integrated biochemical sensors. In pursuit of mechanical flexibility and light weight, organic ferroelectric polymers such as poly(vinylidene fluoride) are developed; however, they still suffer from complicated stretching processes of film fabrication and poor degradability. These poor features severely hinder their applications. Here, the ferroelectric lithography on the biocompatible and biodegradable poly(lactic acid) (PLA) thin films at room temperature is demonstrated. The semicrystalline PLA thin film can be easily fabricated through the melt-casting method, and the desired domain structures can be precisely written according to the predefined patterns. Most importantly, the coercive voltage (Vc ) of PLA thin film is relatively low (lower than 30 V) and can be further reduced with the decrease of the film thickness. These intriguing behaviors combined with satisfying biodegradability make PLA thin film a desirable candidate for ferroelectric lithography and enable its future application in the field of bioelectronics and biomedicine. This work sheds light on further exploration of ferroelectric lithography on other polymer ferroelectrics as well as their application as nanostructured devices.

19.
J Biomed Mater Res A ; 112(2): 296-306, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37850566

RESUMEN

Angiogenesis has been determined to be essential in the occurrence and metastasis of diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion (RVO), choroidal neovascularization (CNV), retinopathy of prematurity (ROP), tumor, etc. However, the clinical use of anti-vascular endothelial growth factors (VEGF) drugs is currently limited due to its high cost, potential side effects, and need for repeated injections. In recent years, nanotechnology has shown promising results in inhibiting neovascularization and reducing reactive oxygen species (ROS) or inflammatory factors. Some nanomaterials can also act as vehicles for drug delivery, such as lipid nanoparticles and PLGA. The process of angiogenesis and its molecular mechanism are discussed in this article. At the same time, this study aims to systematically review the research progress of nanotechnology and offer more treatment options for neovascularization-related diseases in clinical ophthalmology.


Asunto(s)
Neovascularización Coroidal , Retinopatía Diabética , Degeneración Macular , Humanos , Recién Nacido , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Coroidal/tratamiento farmacológico , Retinopatía Diabética/inducido químicamente , Retinopatía Diabética/tratamiento farmacológico , Inyecciones , Degeneración Macular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
20.
Front Plant Sci ; 14: 1208549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078092

RESUMEN

PAMP-induced secreted peptide (PIP), one of the small post-translationally modified peptides (PTMPs), plays a crucial role in plant development and stress tolerance. However, little is known about functional divergence among this peptide family. Here, we studied the evolution of the PIP family in 23 plant species (10 monocotyledons and 13 dicotyledons from 7 families) and their functional divergence in Arabidopsis. A total of 128 putative PIP precursors were identified and classified into two subfamilies through phylogenetic analysis. Functional studies on AtPIP1 which represents Clade I family and AtPIP2 which represents Clade II family have shown that AtPIP2 displayed stronger immunity induction activity but weaker root growth inhibition than AtPIP1 in Arabidopsis. Transcriptome analysis of Arabidopsis seedlings treated with AtPIP1 and AtPIP2 showed that differential genes for both polypeptides were significantly enriched in similar plant defense pathways. However, Co-expression and Protein-protein interaction (PPI) analysis showed that the functions of AtprePIP2 co-expressed genes were more enriched in plant defense pathways than AtprePIP1. Molecular docking results show that AtPIP1 binds to RLK7 receptor with a more stable free energy and less binding area than AtPIP2, while hydrogen bond transfer occurs at the SGP motif position. The above results suggest that the PIP family have undergone functional divergence during evolution. Collectively, this work illustrates the relationship between PIP structure and function using Arabidopsis PIP as an example, and provides new insights into the current understanding between growth inhibition and immune responses which may be correlated but not fully coupled.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...