Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.021
Filtrar
1.
Allergy ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361431

RESUMEN

BACKGROUND: Immune dysregulation and SARS-CoV-2 plasma viremia have been implicated in fatal COVID-19 disease. However, how these two factors interact to shape disease outcomes is unclear. METHODS: We carried out viral and immunological phenotyping on a prospective cohort of 280 patients with COVID-19 presenting to acute care hospitals in Boston, Massachusetts and Genoa, Italy between June 1, 2020 and February 8, 2022. Disease severity, mortality, plasma viremia, and immune dysregulation were assessed. A mouse model of lethal H1N1 influenza infection was used to analyze the therapeutic potential of Notch4 and pyroptosis inhibition in disease outcome. RESULTS: Stratifying patients based on %Notch4+ Treg cells and/or the presence of plasma viremia identified four subgroups with different clinical trajectories and immune phenotypes. Patients with both high %Notch4+ Treg cells and viremia suffered the most disease severity and 90-day mortality compared to the other groups even after adjusting for baseline comorbidities. Increased Notch4 and plasma viremia impacted different arms of the immune response in SARS-CoV-2 infection. Increased Notch4 was associated with decreased Treg cell amphiregulin expression and suppressive function whereas plasma viremia was associated with increased monocyte cell pyroptosis. Combinatorial therapies using Notch4 blockade and pyroptosis inhibition induced stepwise protection against mortality in a mouse model of lethal H1N1 influenza infection. CONCLUSIONS: The clinical trajectory and survival outcome in hospitalized patients with COVID-19 is predicated on two cardinal factors in disease pathogenesis: viremia and Notch4+ Treg cells. Intervention strategies aimed at resetting the immune dysregulation in COVID-19 by antagonizing Notch4 and pyroptosis may be effective in severe cases of viral lung infection.

2.
Plant Physiol Biochem ; 216: 109158, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39357199

RESUMEN

TCP (TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1) is a plant-specific transcription factor that has garnered significant attention due to its wide-ranging involvement in the regulation of plant growth or developmental processes. However, the molecular mechanisms through which TCP genes orchestrate leaf senescence have not been extensively elucidated. BpTCP19, a member of the PCF subfamily in Betula platyphylla, and has high homology to AtTCP19. BpTCP19 displayed pronounced downregulation in response to methyl jasmonate (MeJA) and dark treatment. Overexpressing BpTCP19 in Betula platyphylla led to a delay in leaf senescence, resulting in prolonged leaf greenness under both MeJA and dark conditions. Transcriptome analysis revealed that overexpression of BpTCP19 induced alterations in the expression levels of genes linked to cell proliferation, hormone signaling transduction, and leaf senescence, including the early responsive factor BpWRKY53. Furthermore, through Yeast one-hybrid assays and GUS analysis, BpTCP19 was shown to bind to the promoter region of BpWRKY53, suppressing its expression and thereby retarding leaf senescence. This study elucidates the physiological and molecular functions of BpTCP19 as a central transcriptional regulatory module in leaf senescence and provides a potential target gene for delaying leaf senescence by mitigating sensitivity to external aging signals such as Jasmonic acid (JA) and darkness.

3.
Int Emerg Nurs ; 77: 101508, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236663

RESUMEN

INTRODUCTION: The 24-hour operation of medical emergency units involves crucial first-hand information and medical treatments, which could involve potential complications and disputes if not handled with the utmost professionalism. Effective logistical support and timely activation are crucial in mass casualty triage to prevent systematic treatment issues and chaos. OBJECTIVE: This study explores the integration of Healthcare Failure Mode and Effect Analysis (HFMEA) with a service blueprint to mitigate medical risks and enhance mass casualty triage efficiency in emergency units. METHOD: An expert team analyzed emergency unit standard operating procedure cases using a service blueprint to visually represent mass casualty triage scenarios. The HFMEA identified potential hazards and failure risks in healthcare service delivery during mass casualty triage. RESULTS: Fifteen high-risk hazard indexes exceeding the standard score of eight were identified among three main processes and thirty-one potential failure reasons. The initial operational time for mass casualty triage was approximately 104 min, significantly reduced to 34 min after process revision (p = 0.043, <0.05). CONCLUSIONS: This study demonstrates effective time management in mass casualty triage, potentially saving up to an hour. Improved operational efficiency allows for focused resuscitation efforts, alleviating concerns about timely patient flow initiation.

4.
Regen Biomater ; 11: rbae091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233867

RESUMEN

Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.

5.
Front Immunol ; 15: 1415561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290698

RESUMEN

Background: This study evaluates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon-γ-induced protein-10 (IP-10) in pregnant women with COVID-19 and their newborns, exploring the effects of antiviral treatments and vaccine-induced neutralizing antibody (Nab) inhibition on these key viral infection biomarkers. Methods: We studied 61 pregnant women with past COVID-19 and either three (n=56) or four (n=5) doses of vaccination, and 46 without COVID-19 but vaccinated. We analyzed them and their newborns' blood for TRAIL, IP-10, and Nab levels using enzyme-linked immunosorbent assays (ELISA), correlating these with other clinical factors. Results: Our study found lower TRAIL but higher IP-10 levels in maternal blood than neonatal cord blood, irrespective of past COVID-19 diagnosis. Cases diagnosed with COVID-19 < 4 weeks previously had higher maternal blood TRAIL levels (16.49 vs. 40.81 pg/mL, p=0.0064) and IP-10 (154.68 vs. 225.81 pg/mL, p=0.0170) than those never diagnosed. Antiviral medication lowered TRAIL and IP-10 in maternal blood without affecting Nab inhibition (TRAIL: 19.24 vs. 54.53 pg/mL, p=0.028; IP-10: 158.36 vs. 255.47 pg/mL, p=0.0089). TRAIL and IP-10 levels were similar with three or four vaccine doses, but four doses increased Nab inhibition (p=0.0363). Previously COVID-19 exposed pregnant women had higher Nab inhibition (p < 0.0001). No obvious correlation was found among TRAIL, IP-10, and Nab inhibition level. Conclusions: Our study suggests that lower maternal TRAIL and higher IP-10 levels compared to neonatal cord blood coupled with a rise in both markers following COVID-19 diagnosis that could be reduced by antivirals indicates a correlation to infection severity. Higher vaccine doses enhance Nab inhibition, irrespective of antiviral medication use and independent of TRAIL or IP-10 levels, highlighting the significance and safety of adequate vaccination and antiviral use post-diagnosis in pregnant women.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Quimiocina CXCL10 , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Femenino , Embarazo , Quimiocina CXCL10/sangre , COVID-19/inmunología , COVID-19/prevención & control , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Adulto , Ligando Inductor de Apoptosis Relacionado con TNF/sangre , SARS-CoV-2/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/sangre , Recién Nacido , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Biomarcadores/sangre , Sangre Fetal/inmunología , Vacunación
6.
Org Biomol Chem ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311707

RESUMEN

The first successful copper-catalyzed decarboxylative cyclization reaction of ethynylbenzoxazinones and thiols has been developed. A rarely studied α-addition process to a copper-allenylidene intermediate promoted this reaction. Using this protocol, a range of 2-thiomethylene indole compounds have been obtained. This methodology offers significant advantages including mild reaction conditions, cheap catalysts, good yields and broad substrate compatibility.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39322221

RESUMEN

Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.

8.
Inorg Chem ; 63(39): 18502-18507, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39301813

RESUMEN

We demonstrate that Cu2B8- exhibits distinct fluxional behavior, akin to that of a functional stirrer, with the Cu2 dimer freely rotating on the B8 molecular wheel. This behavior is confirmed by Born-Oppenheimer molecular dynamics simulations. The initiation of this dynamic motion is facilitated by an ultrasoft vibrational mode (less than 10 cm-1), resulting in a negligible rotational barrier of 0.03 kcal/mol, as calculated at the single-point CCSD(T) level. The high stability of Cu2B8- arises from the strong interlayer electrostatic interaction between Cu2 and B8, due to charge transfer from Cu2 to B8, along with additional covalent interactions from the delocalized π electrons of the B8 wheel to the Cu2 dimer. Notably, the Cu2 dimer in Cu2B8- features a two-center one-electron Cu-Cu single bond, while the B82- moiety displays double aromaticity, characterized by the presence of six delocalized π electrons and six delocalized σ electrons.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39315932

RESUMEN

Uveitis remains one of the leading causes of blindness worldwide, with different etiologies requiring separate approaches to treatment. For over a decade, oral, topical, and local injection of corticosteroids as well as systemic conventional disease-modifying antirheumatic drugs (DMARDs) have remained the most effective treatment for noninfectious uveitis (NIU). Systemic administration of antitumor necrosis factor-α and other biological DMARDs have been used for treating cases that responded inadequately to conventional treatments. Unfortunately, some refractory patients still suffer from frequent attacks despite the combination of multiple treatments. Recently, there has been promising evidence for Janus kinase (JAK) inhibitors as the next-generation therapy for NIU. The JAK/signal transducers and activators of the transcription (STAT) signaling pathway mediate the downstream events involved in immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis by binding various ligands, such as cytokines, growth hormones, and growth factors. The mutation or loss of JAK/STAT components is implicated in autoimmune diseases, thus inhibition of such pathways has been an important area of research in therapeutic development.1 In this review, we provide a comprehensive overview of the efficacy and safety of JAK inhibitors for the management of NIU, with evidence from current trials and case reports.

10.
Nanotechnology ; 35(50)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39321821

RESUMEN

Faormamadinium based perovskites have been proposed to replace the methylammonium lead tri-iodide (MAPbI3) perovskite as the light absorbing layer of photovoltaic cells owing to their photo-active and chemically stable properties. However, the crystal phase transition from the photo-activeα-FAPbI3to the non-perovksiteδ-FAPbI3still occurs in un-doped FAPbI3films owing to the existence of crack defects, which degrads the photovoltaic responses. To investigate the crack ratio (CR)-dependent structure and excitonic characteristics of the polycrystalline FAPbI3thin films deposited on the carboxylic acid functionalized ITO/glass substrates, various spectra and images were measured and analyzed, which can be utilized to make sense of the different devices responses of the resultant perovskite based photovoltaic cells. Our experimental results show that the there is a trade-off between the formations of surface defects and trapped iodide-mediated defects, thereby resulting in an optimal crack density or CR of the un-dopedα-FAPbI3active layer in the range from 4.86% to 9.27%. The decrease in the CR (tensile stress) results in the compressive lattice and thereby trapping the iodides near the PbI6octahedra in the bottom region of the FAPbI3perovskite films. When the CR of the FAPbI3film is 8.47%, the open-circuit voltage (short-circuit current density) of the resultant photovoltaic cells significantly increased from 0.773 V (16.62 mA cm-2) to 0.945 V (18.20 mA cm-2) after 3 d. Our findings help understanding the photovoltaic responses of the FAPbI3perovskite based photovoltaic cells on the different days.

11.
Nanoscale ; 16(34): 16148-16158, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39114954

RESUMEN

Transparent memristor-based neuromorphic synapses are expected to be specialised devices for high-speed information transmission and processing. The synaptic linearity and potentiation/depression cycles are imperative issues for the application of memristors. This work explores a memristor for improving switching uniformity by introducing a thin HfOx interfacial layer as a diffusion-limiting layer sandwiched between WOx and ITO bottom electrodes. An optimized HfOx thickness not only provides the best switching properties but also shows superior synaptic properties. The optimized 15 nm thin WOx layer can retain the memristor's excellence in P/D linearity, a cycling stability of 494 epochs and image recognition up to 3 mm bending, making it suitable for flexible devices. The artificial synapse is capable of reversible short-term and long-term learning behaviors confirmed by spike-timing-dependent-plasticity (STDP) results. X-ray photoelectron spectroscopy confirms the device composition and provides the oxygen vacancy concentration at the WOx/HfOx interface to realize the switching mechanism. The thicknesses of the different layers are estimated from the high-resolution transmission electron microscopy observations. The fabricated device exhibits 92.2% transparency, as confirmed by the UV-Vis spectrum.

12.
Huan Jing Ke Xue ; 45(8): 4915-4922, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168707

RESUMEN

Microorganisms produce extracellular enzymes to meet elemental requirements and cope with stoichiometric imbalances of resources. To gain insights into the cycling of C, N, and P, the activities of the C∶N∶P acquisition enzymes have been extensively investigated. To detect the effects of long-term fertilization practices on soil nutrient balance and characteristics of soil enzymatic stoichiometry in black soil, four different fertilization treatments were selected: no fertilization (CK), nitrogen fertilizer (N), phosphorus fertilizer (P), and combination of nitrogen and phosphorus fertilizers (NP). Soil samples were collected in both April 2021 and April 2022 to determine soil enzyme activities and their stoichiometric characteristics. The results showed that soil acid phosphatase and ß-D-glucosidase activities were significantly higher in the N and NP treatments than in CK by 68%-158% and 26%-222%, respectively. Soil ß-N-acetylaminoglucosidase activities were significantly higher in the P and NP treatments, with the highest around 75.48 nmol·ï¼ˆg·h)-1 and 106.81 nmol·ï¼ˆg·h)-1, respectively. Two-way ANOVA analysis showed that N and P inputs had a great impact on soil enzyme activities. Redundancy analysis showed that the main factors controlling enzyme activities were soil pH, microbial biomass phosphorus, and soil available P content. It was found that N inputs significantly increased enzyme vector length, which was ranged from 1.32 to 1.52, and the enzyme vector angles were all larger than 45°, suggesting C and P co-limited in the black soils. These findings suggest that 40 years of fertilization have had a great impact on soil enzymes and the related resource use strategy, which provides great implications for assessing soil nutrients balance and soil sustainability.


Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Microbiología del Suelo , Suelo , Suelo/química , Fósforo/análisis , Fosfatasa Ácida/metabolismo , Carbono/análisis , Factores de Tiempo , China
13.
Chem Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39176247

RESUMEN

An important subject of porous organic materials is their capacity to access enantioselectivity due to their high surface area, controllable pore size, and ease of functionalization. However, recyclability of enantio-separation is a challenge, mainly due to the complex procedures of recovery and refreshing from enantiomers. For the first time, we combined nanochannel technology and supramolecular chiral assembly to achieve efficient enantioselectivity. Fine-designed amphiphilic chiral rod-coil molecules 1-3 were immobilized to SBA-15 pore walls to form SA-M1-3 (abbreviation for amino-functionalized SBA-15 connected to molecules 1-3), which commenced chiral aggregation inside the channels. The experimental results indicated that the strong π-π stacking interaction between the rigid terphenyl groups, as well as hydrophilic-hydrophobic interaction of the amphiphiles, assisted in chiral arrangement in aqueous solution, and was accompanied by amplification of chirality. As a result, porous chiral channels exhibiting enhanced efficiency in asymmetric synthesis were manufactured, where enantioselectivity can be controlled by the initial structural design of amphiphiles that induce chiral aggregation behaviors. The chiral centers of SA-M1 and SA-M2 are located on hydrophobic and hydrophilic coils, respectively, while SA-M3 possesses both chiral coils. The SA-M materials proceeded with chiral aggregation and behaved efficiently for enantioselectivity. SA-M3, which contained the most chiral centers, showed the most optimal enantioselectivity with an enantiomeric excess (ee) value up to 71.75%, which occurred because of the strongly driven chiral aggregation of the hydrophobic and hydrophilic chiral coils. The covalent hybrid structures of the SA-M materials can be easily refreshed simply through washing, and exhibited excellent recyclability with negligible loss of efficiency. Therefore, the SA-M materials have the ability to provide sustainable and reliable application value for enantiomer separation.

14.
Zhonghua Nan Ke Xue ; 30(2): 151-156, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-39177349

RESUMEN

OBJECTIVE: To evaluate the efficiency of the four domestic language models, ERNIE Bot, ChatGLM2, Spark Desk and Qwen-14B-Chat, all with a massive user base and significant social attention, in response to consultations about PCa-related perioperative nursing and health education. METHODS: We designed a questionnaire that includes 15 questions commonly concerned by patients undergoing radical prostatectomy and 2 common nursing cases, and inputted the questions into each of the four language models for simulation consultation. Three nursing experts assessed the model responses based on a pre-designed Likert 5-point scale in terms of accuracy, comprehensiveness, understandability, humanistic care, and case analysis. We evaluated and compared the performance of the four models using visualization tools and statistical analyses. RESULTS: All the models generated high-quality texts with no misleading information and exhibited satisfactory performance. Qwen-14B-Chat scored the highest in all aspects and showed relatively stable outputs in multiple tests compared with ChatGLM2. Spark Desk performed well in terms of understandability but lacked comprehensiveness and humanistic care. Both Qwen-14B-Chat and ChatGLM2 demonstrated excellent performance in case analysis. The overall performance of ERNIE Bot was slightly inferior. All things considered, Qwen-14B-Chat was superior to the other three models in consultations about PCa-related perioperative nursing and health education. CONCLUSION: In PCa-related perioperative nursing, large language models represented by Qwen-14B-Chat are expected to become powerful auxiliary tools to provide patients with more medical expertise and information support, so as to improve the patient compliance and the quality of clinical treatment and nursing.


Asunto(s)
Enfermería Perioperatoria , Humanos , Encuestas y Cuestionarios , Masculino , China , Educación en Salud/métodos , Lenguaje , Prostatectomía/métodos
15.
World J Clin Cases ; 12(24): 5523-5533, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188596

RESUMEN

BACKGROUND: The results of existing lower extremity robotics studies are conflicting, and few relevant clinical trials have examined short-term efficacy. In addition, most of the outcome indicators in existing studies are scales, which are not objective enough. We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot, to provide a clinical reference. AIM: To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot. METHODS: Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group. They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training. The training was performed five times a week, once a day, for 2 wk. The t-test or non-parametric test was used to compare the three-dimensional gait parameters and balance between the two groups before and after treatment. RESULTS: The scores of basic activities of daily living, Stroke-Specific Quality of Life Scale, FM balance meter, Fugl-Meyer Assessment scores, Rivermead Mobility Index, Stride speed, Stride length, and Time Up and Go test in the two groups were significantly better than before treatment (19.29 ± 12.15 vs 3.52 ± 4.34; 22.57 ± 17.99 vs 4.07 ± 2.51; 1.21 ± 0.83 vs 0.18 ± 0.40; 3.50 ± 3.80 vs 0.96 ± 2.08; 2.07 ± 1.21 vs 0.41 ± 0.57; 0.89 ± 0.63 vs 0.11 ± 0.32; 12.38 ± 9.00 vs 2.80 ± 3.43; 18.84 ± 11.24 vs 3.80 ± 10.83; 45.12 ± 69.41 vs 8.41 ± 10.20; 29.45 ± 16.62 vs 8.68 ± 10.74; P < 0.05). All outcome indicators were significantly better in the A3 group than in the control group, except the area of the balance parameter. CONCLUSION: For the short-term treatment of patients with subacute stroke, the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training.

16.
Food Funct ; 15(18): 9368-9389, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39189385

RESUMEN

Inflammation significantly influences the degeneration of dopaminergic neurons in Parkinson's disease (PD), which is potentially intensified by associated gut dysbiosis. The therapeutic potential of probiotics, due to their antioxidant, anti-inflammatory, and gut microbiota modulatory properties, is explored herein as a means to improve gut health and influence the gut-brain-microbiota axis in the context of PD. In this study, we investigated the role and possible mechanism of Bifidobacterium animalis subsp. lactis MH-022 (B. lactis MH-022) supplementation in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Findings demonstrated that B. lactis MH-022 supplementation markedly ameliorated motor deficits, preserved dopaminergic neurons, enhanced the antioxidant capacity, and mitigated inflammation through restoring mitochondrial function. Furthermore, B. lactis MH-022 supplementation significantly altered the gut microbiota composition, augmenting the production of short-chain fatty acids and promoting the proliferation of beneficial bacterial taxa, thereby reinforcing their anti-inflammatory properties. Correlation analyses established strong associations between specific bacterial taxa and improvements in motor function, antioxidant levels, and reductions in inflammation markers. These insights emphasize the therapeutic potential of B. lactis MH-022 in modulating diverse aspects of PD, particularly highlighting its role in reducing inflammation, restoring mitochondrial function, enhancing antioxidant capacity, and reshaping the gut microbiota. This multifaceted approach underscores the probiotic's potential in reducing neuroinflammation and protecting dopaminergic neurons, thus offering a promising avenue for PD treatment.


Asunto(s)
Bifidobacterium animalis , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Inflamación , Oxidopamina , Enfermedad de Parkinson , Probióticos , Animales , Ratas , Probióticos/farmacología , Probióticos/uso terapéutico , Masculino , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Bifidobacterium animalis/fisiología , Ratas Sprague-Dawley , Disbiosis/microbiología , Disbiosis/terapia , Suplementos Dietéticos
17.
Int J Biol Macromol ; 278(Pt 2): 134783, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153673

RESUMEN

Glucagon-like peptide-1 (GLP-1) as a multifunctional hormone is secreted mainly from enteroendocrine L-cells, and enhancing its endogenous secretion has potential benefits of regulating glucose homeostasis and controlling body weight gain. In the present study, a novel polysaccharide (h-DHP) with high ability to enhance plasma GLP-1 level in mice was isolated from Dendrobium huoshanense protocorm-like bodies under the guidance of activity evaluation. Structural identification showed that h-DHP was an acidic polysaccharide with the molecular weight of 1.38 × 105 Da, and was composed of galactose, glucose, arabinose and glucuronic acid at a molar ratio of 15.7: 11.2: 4.5: 1.0 with a backbone consisting of →5)-α-L-Araf-(1→, →3)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →3,6)-α-D-Galp-(1→, →6)-ß-D-Glcp-(1→ and →4,6)-ß-D-Glcp-(1→ along with branches consisting of α-L-Araf-(1→, α-D-Galp-(1→, α-D-GlcAp-(1→, ß-D-Glcp-(1→ and →4)-ß-D-Glcp-(1→. Animal experiments with different administration routes demonstrated that h-DHP-enhanced plasma GLP-1 level was attributed to h-DHP-promoted GLP-1 secretion in the enteroendocrine L-cells, which was supported by h-DHP-enhanced extracellular GLP-1 level in STC-1 cells. Inhibition of adenylate cyclase and phospholipase C indicated that cAMP and cAMP-triggered intracellular Ca2+ increase participated in h-DHP-promoted GLP-1 secretion. These results suggested that h-DHP has the potential of enhancing endogenous GLP-1 level through h-DHP-promoted and cAMP-mediated GLP-1 secretion from enteroendocrine cells.


Asunto(s)
Dendrobium , Péptido 1 Similar al Glucagón , Polisacáridos , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/sangre , Dendrobium/química , Animales , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Masculino , Peso Molecular , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/efectos de los fármacos , AMP Cíclico/metabolismo
18.
J Microbiol Immunol Infect ; 57(5): 709-719, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160115

RESUMEN

BACKGROUND: Cytolethal distending toxin (CDT) belongs to the genotoxin family and is closely related to Campylobacter jejuni-associated gastroenteritis. We recently reported that CDT triggers the danger-associated molecular pattern (DAMP) signaling to exert deleterious effects on host cells. However, how CDT traffics in cells and the mechanism of CDT intoxication remain to be elucidated. METHODS: Recombinant CDT subunits (CdtA, CdtB, and CdtC) were purified, and their activity was characterized in gastrointestinal cells. Molecular approaches and image tracking were employed to analyze the delivery of CDT in host cells. RESULTS: In this study, we found that CDT interacts with the receptor of advanced glycation end products (RAGE) and high mobility group box 1 (HMGB1) to enter the cells. Our results further showed that CdtB transport in cells through the dynamin-dependent endocytic pathway and lysosome is involved in this process. Conversely, blockage of RAGE signaling resulted in a reduction in CDT-arrested cell cycles, indicating that RAGE is involved in CDT intracellular transport and its subsequent pathogenesis. CONCLUSION: Our results demonstrate that RAGE is important for CDT trafficking in the cells. These findings expand our understanding of important issues related to host cell intoxication by C. jejuni CDT.


Asunto(s)
Toxinas Bacterianas , Campylobacter jejuni , Receptor para Productos Finales de Glicación Avanzada , Humanos , Toxinas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteína HMGB1/metabolismo , Transducción de Señal , Transporte de Proteínas , Animales , Endocitosis
20.
Eur J Pharm Biopharm ; 202: 114413, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029878

RESUMEN

In-situ API crystallization in carrier matrices has attracted extensive attention in recent years for its advantages over traditional preparation processes. However, due to the lack of systemic research on molecular self-assembly behaviors, the products obtained by in-situ crystallization suffer from the problems of polymorphic transformation and drug expulsion during storage, limiting its industrial application. This paper investigates the in-situ sequential crystallization behavior of tristearin (SSS) and fenofibrate (FEN), utilizing SSS as the carrier and FEN as the API. It was found that the behavior of mixed crystallization significantly differs from single-component crystallization, including direct formation of stable form of SSS and the rapid crystallization of FEN. During the crystallization process, the melting FEN promotes the movement of SSS molecules, while the sliding of SSS lamellae, in turn, provides a mechanical stimulus to enhance the nucleation of FEN. Based on the observed synergistic crystallization behavior, the distribution and stability of the API within FEN solid lipid microparticles (SLMs) during storage were evaluated, while also examining the stability variations in SLMs formulated at different cooling rates and drug loading concentrations. The findings indicate that the initial nucleated FEN results in a decrease in the surrounding molten FEN and the irregularity of the SSS lamellas, thereby preventing the remaining molten FEN from achieving complete crystallization within a brief period. Due to the compatibility between FEN and SSS, some SSS may blend with the molten FEN, potentially resulting in further crystallization during storage and consequently increasing the risk of drug expulsion.


Asunto(s)
Cristalización , Estabilidad de Medicamentos , Fenofibrato , Fenofibrato/química , Lípidos/química , Triglicéridos/química , Tamaño de la Partícula , Portadores de Fármacos/química , Hipolipemiantes/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Almacenaje de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...