Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 13(5): 2835-2858, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35774337

RESUMEN

Combining orientation estimation with localization microscopy opens up the possibility to analyze the underlying orientation of biomolecules on the nanometer scale. Inspired by the recent improvement of the localization precision by shifting excitation patterns (MINFLUX, SIMFLUX), we have adapted the idea towards the modulation of excitation polarization to enhance the orientation precision. For this modality two modes are analyzed: i) normally incident excitation with three polarization steps to retrieve the in-plane angle of emitters and ii) obliquely incident excitation with p-polarization with five different azimuthal angles of incidence to retrieve the full orientation. Firstly, we present a theoretical study of the lower precision limit with a Cramér-Rao bound for these modes. For the oblique incidence mode we find a favorable isotropic orientation precision for all molecular orientations if the polar angle of incidence is equal to arccos ⁡ 2 / 3 ≈ 35 degrees. Secondly, a simulation study is performed to assess the performance for low signal-to-background ratios and how inaccurate illumination polarization angles affect the outcome. We show that a precision, at the Cramér-Rao bound (CRB) limit, of just 2.4 and 1.6 degrees in the azimuthal and polar angles can be achieved with only 1000 detected signal photons and 10 background photons per pixel (about twice better than reported earlier). Lastly, the alignment and calibration of an optical microscope with polarization control is described in detail. With this microscope a proof-of-principle experiment is carried out, demonstrating an experimental in-plane precision close to the CRB limit for signal photon counts ranging from 400 to 10,000.

2.
Opt Express ; 29(21): 34097-34108, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809207

RESUMEN

Total internal reflection fluorescence (TIRF) microscopy is an important imaging tool for the investigation of biological structures, especially the study on cellular events near the plasma membrane. Imaging at cryogenic temperatures not only enables observing structures in a near-native and fixed state but also suppresses irreversible photo-bleaching rates, resulting in increased photo-stability of fluorophores. Traditional TIRF microscopes produce an evanescent field based on high numerical aperture immersion objective lenses with high magnification, which results in a limited field of view and is incompatible with cryogenic conditions. Here, we present a waveguide-based TIRF microscope, which is able to generate a uniform evanescent field using high refractive index waveguides on photonic chips and to obtain cellular observation at cryogenic temperatures. Our method provides an inexpensive way to achieve total-internal-reflection fluorescence imaging under cryogenic conditions.


Asunto(s)
Membrana Celular , Congelación , Lentes , Microscopía Fluorescente/métodos , Refractometría , Diseño de Equipo , Colorantes Fluorescentes , Células HEK293 , Humanos , Iluminación , Microscopía Fluorescente/instrumentación , Fotones
3.
Nat Commun ; 12(1): 5934, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635658

RESUMEN

Estimating the orientation and 3D position of rotationally constrained emitters with localization microscopy typically requires polarization splitting or a large engineered Point Spread Function (PSF). Here we utilize a compact modified PSF for single molecule emitter imaging to estimate simultaneously the 3D position, dipole orientation, and degree of rotational constraint from a single 2D image. We use an affordable and commonly available phase plate, normally used for STED microscopy in the excitation light path, to alter the PSF in the emission light path. This resulting Vortex PSF does not require polarization splitting and has a compact PSF size, making it easy to implement and combine with localization microscopy techniques. In addition to a vectorial PSF fitting routine we calibrate for field-dependent aberrations which enables orientation and position estimation within 30% of the Cramér-Rao bound limit over a 66 µm field of view. We demonstrate this technique on reorienting single molecules adhered to the cover slip, λ-DNA with DNA intercalators using binding-activated localization microscopy, and we reveal periodicity on intertwined structures on supercoiled DNA.


Asunto(s)
ADN Superhelicoidal/ultraestructura , ADN/ultraestructura , Imagenología Tridimensional/métodos , Microscopía/métodos , Sitios de Unión , ADN/metabolismo , ADN Superhelicoidal/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Imagenología Tridimensional/instrumentación , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Microscopía/instrumentación
5.
Chemphyschem ; 19(14): 1774-1780, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29659104

RESUMEN

Single Molecule Localization Microscopy has become one of the most successful and widely applied methods of Super-resolution Fluorescence Microscopy. Its achievable resolution strongly depends on the number of detectable photons from a single molecule until photobleaching. By cooling a sample from room temperature down to liquid nitrogen temperatures, the photostability of dyes can be enhanced by more than 100 fold, which results in an improvement in localization precision greater than 10 times. Here, we investigate a variety of fluorescent dyes in the red spectral region, and we find an average photon yield between 3.5 ⋅ 106 to 11 ⋅ 106 photons before bleaching at liquid nitrogen temperatures, corresponding to a theoretical localization precision around 0.1 nm.

6.
Small Methods ; 2(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31240238

RESUMEN

Light microscopy, allowing sub-diffraction-limited resolution, has been among the fastest developing techniques at the interface of biology, chemistry, and physics. Intriguingly no theoretical limit exists on how far the underlying measurement uncertainty can be lowered. In particular data fusion of large amounts of images can reduce the measurement error to match the resolution of structural methods like cryo-electron microscopy. Fluorescence, although reliant on a reporter molecule and therefore not the first choice to obtain ultraresolution structures, brings highly specific labeling of molecules in a large assembly to the table and inherently allows the detection of multiple colors, which enables the interrogation of multiple molecular species at the same time in the same sample. Here, the problems to be solved in the coming years, with the aim of higher resolution, are discussed, and what polarization depletion of fluorescence at cryogenic temperatures can contribute for fluorescence imaging of biological samples, like whole cells, is described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA