Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916665

RESUMEN

In mouse and human, genes subjected to genomic imprinting have been shown to function in development, behavior, and post-natal adaptations. Failure to correctly imprint genes in human is associated with developmental syndromes, adaptive, and metabolic disorders during life as well as numerous forms of cancer. In recent years researchers have turned to RNA-seq technologies applied to reciprocal hybrid strains of mice to identify novel imprinted genes, causing a threefold increase in genes reported as having a parental origin-specific expression bias. The functional relevance of parental origin-specific expression bias is not fully appreciated especially since many are reported with only minimal parental bias (e.g. 51:49). Here, we present an in-depth meta-analysis of previously generated RNA-seq data and show that the methods used to generate and analyze libraries greatly influence the calling of allele-specific expression. Validation experiments show that most novel genes called with parental-origin-specific allelic bias are artefactual, with the mouse strain contributing a larger effect on expression biases than parental origin. Of the weak novel genes that do validate, most are located at the periphery of known imprinted domains, suggesting they may be affected by local allele- and tissue-specific conformation. Together these findings highlight the need for robust tools, definitions, and validation of putative imprinted genes to provide meaningful information within imprinting databases and to understand the functional and mechanistic implications of the process.


Asunto(s)
Perfilación de la Expresión Génica , Impresión Genómica , Humanos , Animales , Ratones , Expresión Génica , Perfilación de la Expresión Génica/métodos , Alelos , Metilación de ADN
2.
PLoS Genet ; 18(4): e1010186, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35482825

RESUMEN

At interphase, de-condensed chromosomes have a non-random three-dimensional architecture within the nucleus, however, little is known about the extent to which nuclear organisation might influence expression or vice versa. Here, using imprinting as a model, we use 3D RNA- and DNA-fluorescence-in-situ-hybridisation in normal and mutant mouse embryonic stem cell lines to assess the relationship between imprinting control, gene expression and allelic distance from the nuclear periphery. We compared the two parentally inherited imprinted domains at the Dlk1-Dio3 domain and find a small but reproducible trend for the maternally inherited domain to be further away from the periphery however we did not observe an enrichment of inactive alleles in the immediate vicinity of the nuclear envelope. Using Zfp57KO ES cells, which harbour a paternal to maternal epigenotype switch, we observe that expressed alleles are significantly further away from the nuclear periphery. However, within individual nuclei, alleles closer to the periphery are equally likely to be expressed as those further away. In other words, absolute position does not predict expression. Taken together, this suggests that whilst stochastic activation can cause subtle shifts in localisation for this locus, there is no dramatic relocation of alleles upon gene activation. Our results suggest that transcriptional activity, rather than the parent-of-origin, defines subnuclear localisation at an endogenous imprinted domain.


Asunto(s)
Proteínas de Unión al Calcio , Impresión Genómica , Yoduro Peroxidasa , Proteínas de la Membrana , Alelos , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Expresión Génica , Impresión Genómica/genética , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Padres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...