Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 270: 119950, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822250

RESUMEN

Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.


Asunto(s)
Ataxias Espinocerebelosas , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología , Cerebelo/patología , Corteza Cerebelosa/diagnóstico por imagen , Corteza Cerebelosa/patología , Núcleos Cerebelosos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Atrofia/patología
2.
Brain Commun ; 4(1): fcab306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35291442

RESUMEN

The cerebellar nuclei are a brain region with high iron content. Surprisingly, little is known about iron content in the cerebellar nuclei and its possible contribution to pathology in cerebellar ataxias, with the only exception of Friedreich's ataxia. In the present exploratory cross-sectional study, quantitative susceptibility mapping was used to investigate volume, iron concentration and total iron content of the dentate nuclei in common types of hereditary and non-hereditary degenerative ataxias. Seventy-nine patients with spinocerebellar ataxias of types 1, 2, 3 and 6; 15 patients with Friedreich's ataxia; 18 patients with multiple system atrophy, cerebellar type and 111 healthy controls were also included. All underwent 3 T MRI and clinical assessments. For each specific ataxia subtype, voxel-based and volumes-of-interest-based group analyses were performed in comparison with a corresponding age- and sex-matched control group, both for volume, magnetic susceptiblity (indicating iron concentration) and susceptibility mass (indicating total iron content) of the dentate nuclei. Spinocerebellar ataxia of type 1 and multiple system atrophy, cerebellar type patients showed higher susceptibilities in large parts of the dentate nucleus but unaltered susceptibility masses compared with controls. Friedreich's ataxia patients and, only on a trend level, spinocerebellar ataxia of type 2 patients showed higher susceptibilities in more circumscribed parts of the dentate. In contrast, spinocerebellar ataxia of type 6 patients revealed lower susceptibilities and susceptibility masses compared with controls throughout the dentate nucleus. Spinocerebellar ataxia of type 3 patients showed no significant changes in susceptibility and susceptibility mass. Lower volume of the dentate nuclei was found to varying degrees in all ataxia types. It was most pronounced in spinocerebellar ataxia of type 6 patients and least prominent in spinocerebellar ataxia of type 3 patients. The findings show that alterations in susceptibility revealed by quantitative susceptibility mapping are common in the dentate nuclei in different types of cerebellar ataxias. The most striking changes in susceptibility were found in spinocerebellar ataxia of type 1, multiple system atrophy, cerebellar type and spinocerebellar ataxia of type 6. Because iron content is known to be high in glial cells but not in neurons of the cerebellar nuclei, the higher susceptibility in spinocerebellar ataxia of type 1 and multiple system atrophy, cerebellar type may be explained by a reduction of neurons (increase in iron concentration) and/or an increase in iron-rich glial cells, e.g. microgliosis. Hypomyelination also leads to higher susceptibility and could also contribute. The lower susceptibility in SCA6 suggests a loss of iron-rich glial cells. Quantitative susceptibility maps warrant future studies of iron content and iron-rich cells in ataxias to gain a more comprehensive understanding of the pathogenesis of these diseases.

3.
Neurobiol Learn Mem ; 169: 107185, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32061996

RESUMEN

In the present study extinction and renewal of cognitive associations were assessed in two experiments in participants with focal and degenerative cerebellar disease. Using a predictive learning task, participants had to learn by trial and error the relationships between food items and the occurrence of stomach trouble in a hypothetical patient. In the first experiment, focus was on renewal effects. Participants with chronic cerebellar stroke (n = 14; mean age 50.9 ± 12 years), participants with degenerative cerebellar disease (n = 16; mean age 58 ± 12 years), age-, sex-, and education matched controls (n = 20; mean age 53.7 ± 10.8 years) and young controls (n = 19; mean age 23.2 ± 2.7 years) were tested. Acquisition and extinction of food-stomach trouble associations took part in two different contexts (represented by restaurants). In a subsequent test phase, food stimuli were presented in both contexts and no feedback was given. This allowed testing for renewal of the initially acquired associations in the acquisition context. Acquisition and extinction learning were not significantly different between groups. Significant renewal effects were present in young controls only. In the second experiment, focus was on extinction. To control for age effects, 19 young participants with chronic surgical lesions of the cerebellum (mean age 25.6 ± 6.1 years), and 24 age-, sex- and education-matched healthy controls were tested. Acquisition and extinction of food-stomach trouble associations took part in the same context. In the extinction phase, the relationship with stomach trouble was reversed in some of the food items. Acquisition and extinction learning were not significantly different between groups. The main finding of the present study was preserved extinction of learned cognitive associations in participants with chronic cerebellar disease. Findings agree with previous observations in the literature that cognitive abnormalities are frequently absent or weak in adults with cerebellar disease. This does not exclude a contribution of the cerebellum to extinction of learned associations. For example, findings may be different in more challenging cognitive tasks, and in participants with acute cerebellar disease with no time for compensation.


Asunto(s)
Aprendizaje por Asociación/fisiología , Enfermedades Cerebelosas/psicología , Extinción Psicológica/fisiología , Adulto , Anciano , Enfermedades Cerebelosas/diagnóstico por imagen , Enfermedades Cerebelosas/patología , Femenino , Humanos , Curva de Aprendizaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Sci Rep ; 10(1): 22434, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33384434

RESUMEN

Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)-US (unconditioned stimulus) trials were applied. During the first 50 paired CS-US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS-US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance.


Asunto(s)
Parpadeo , Cerebelo/fisiología , Condicionamiento Clásico , Extinción Psicológica , Estimulación Transcraneal de Corriente Directa , Adulto , Ondas Encefálicas , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
5.
Cerebellum Ataxias ; 4: 15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28932407

RESUMEN

BACKGROUND: The control of grip forces when moving a hand held object is impaired in patients with cerebellar degeneration. We asked the question whether after-effects of anodal transcranial direct current stimulation (tDCS) applied to the lateral cerebellum or M1 improved grip force control in cerebellar patients. METHODS: Grip force control while holding an object during cyclic arm movements was assessed in patients with pure cerebellar degeneration (n = 14, mean age 50.2 years ± SD 8.8 years) and age- and sex-matched control participants (n = 14, mean age 50.7 years ± SD 9.8 years). All subjects were tested before and after application of tDCS (2 mA, 22 min) in a within-subject design. Each subject received anodal tDCS applied to the cerebellum, anodal tDCS applied to M1 or sham-stimulation with a break of 1 week between the three experimental sessions. RESULTS: There were no clear after-effects of tDCS on grip force control neither in control participants nor in cerebellar patients. Cerebellar patients showed typical impairments with higher grip forces, a higher variability of movements. CONCLUSION: In the present study, deficits in grip force control were neither improved by tDCS applied over the cerebellum nor M1 in cerebellar degeneration.

6.
J Neurophysiol ; 118(2): 732-748, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28469001

RESUMEN

Several studies have identified transcranial direct current stimulation (tDCS) as a potential tool in the rehabilitation of cerebellar disease. Here, we tested whether tDCS could alleviate motor impairments of subjects with cerebellar degeneration. Three groups took part in this study: 20 individuals with cerebellar degeneration, 20 age-matched controls, and 30 young controls. A standard reaching task with force-field perturbations was used to compare motor adaptation among groups and to measure the effect of stimulation of the cerebellum or primary motor cortex (M1). Cerebellar subjects and age-matched controls were tested during each stimulation type (cerebellum, M1, and sham) with a break of 1 wk among each of the three sessions. Young controls were tested during one session under one of three stimulation types (anodal cerebellum, cathodal cerebellum, or sham). As expected, individuals with cerebellar degeneration had a reduced ability to adapt to motor perturbations. Importantly, cerebellar patients did not benefit from anodal stimulation of the cerebellum or M1. Furthermore, no stimulation effects could be detected in aging and young controls. The present null results cannot exclude more subtle tDCS effects in larger subject populations and between-subject designs. Moreover, it is still possible that tDCS affects motor adaptation in cerebellar subjects and control subjects under a different task or with alternative stimulation parameters. However, for tDCS to become a valuable tool in the neurorehabilitation of cerebellar disease, stimulation effects should be present in group sizes commonly used in this rare patient population and be more consistent and predictable across subjects and tasks.NEW & NOTEWORTHY Transcranial direct current stimulation (tDCS) has been identified as a potential tool in the rehabilitation of cerebellar disease. We investigated whether tDCS of the cerebellum and primary motor cortex could alleviate motor impairments of subjects with cerebellar degeneration. The present study did not find stimulation effects of tDCS in young controls, aging controls, and individuals with cerebellar degeneration during reach adaptation. Our results require a re-evaluation of the clinical potential of tDCS in cerebellar patients.


Asunto(s)
Adaptación Fisiológica/fisiología , Cerebelo/fisiopatología , Actividad Motora/fisiología , Corteza Motora/fisiopatología , Degeneraciones Espinocerebelosas/rehabilitación , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Anciano , Envejecimiento/fisiología , Cerebelo/fisiología , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Trastornos del Movimiento/fisiopatología , Trastornos del Movimiento/rehabilitación , Rehabilitación Neurológica/métodos , Degeneraciones Espinocerebelosas/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Insuficiencia del Tratamiento , Extremidad Superior/fisiología , Extremidad Superior/fisiopatología , Adulto Joven
7.
Neuroimage ; 116: 196-206, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25896930

RESUMEN

Ageing generally leads to impairments in cognitive function and the ability to execute and learn new movements. While the causes of these impairments are often multi-factorial, integrity of the cerebellum in an elderly population is an important predictive factor of both motor function and cognitive function. A similar association between cerebellar integrity and function is true for cerebellar patients. We set out to investigate the analogies between the pattern of cerebellar degeneration of a healthy ageing population and cerebellar patients. We quantified cerebellar regional volumes by applying voxel-based morphometry (VBM) to a publicly available dataset of MR images obtained in 313 healthy subjects aged between 18 and 96 years and a dataset of MR images of 21 cerebellar patients. We observed considerable overlap in regions with the strongest loss of cerebellar volume in the two datasets. In both datasets, the anterior lobe of the cerebellum (lobules I-V) and parts of the superior cerebellum (primarily lobule VI) showed the strongest degeneration of cerebellar volume. However, the most significant voxels in cerebellar patients were shifted posteriorly (lobule VII) compared to the voxels that degenerate most with age in the healthy population. The results showed a pattern of significant degeneration of the posterior motor region (lobule VIIIb) in both groups, and significant degeneration of lobule IX and X in the healthy population, but not in cerebellar patients. Furthermore, we saw strong volumetric degeneration of functionally defined cerebellar regions associated with cerebral somatomotor function in both groups. Predominance of degeneration in the anterior lobe and lobule VI suggests impairment of motor function in both groups, while we suggest that the posterior shift of degeneration in cerebellar patients would be associated with relatively stronger impairment of higher motor function and cognitive function. Thus, these results may explain the specific symptomology associated with cerebellar degeneration in ageing and in cerebellar patients.


Asunto(s)
Envejecimiento/patología , Ataxia Cerebelosa/patología , Cerebelo/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
8.
PLoS One ; 10(4): e0123321, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894396

RESUMEN

Previous studies on sensorimotor adaptation revealed no awareness of the nature of the perturbation after adaptation to an abrupt 30° rotation of visual feedback or after adaptation to gradually introduced perturbations. Whether the degree of awareness depends on the magnitude of the perturbation, though, has as yet not been tested. Instead of using questionnaires, as was often done in previous work, the present study used a process dissociation procedure to measure awareness and unawareness. A naïve, implicit group and a group of subjects using explicit strategies adapted to 20°, 40° and 60° cursor rotations in different adaptation blocks that were each followed by determination of awareness and unawareness indices. The awareness index differed between groups and increased from 20° to 60° adaptation. In contrast, there was no group difference for the unawareness index, but it also depended on the size of the rotation. Early adaptation varied between groups and correlated with awareness: The more awareness a participant had developed the more the person adapted in the beginning of the adaptation block. In addition, there was a significant group difference for savings but it did not correlate with awareness. Our findings suggest that awareness depends on perturbation size and that aware and strategic processes are differentially involved during adaptation and savings. Moreover, the use of the process dissociation procedure opens the opportunity to determine awareness and unawareness indices in future sensorimotor adaptation research.


Asunto(s)
Adaptación Fisiológica , Concienciación , Movimiento , Rotación , Percepción Visual , Femenino , Humanos , Masculino , Adulto Joven
9.
Brain ; 138(Pt 3): 784-97, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25609685

RESUMEN

Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum.


Asunto(s)
Trastorno Autístico/complicaciones , Trastorno Autístico/patología , Síntomas Conductuales/etiología , Encéfalo/patología , Discapacidades para el Aprendizaje/etiología , Actividad Motora/fisiología , Niño , Femenino , Humanos , Modelos Lineales , Masculino , Pruebas Neuropsicológicas , Propiocepción , Desempeño Psicomotor , Robótica , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...