Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 67(6): 641-653, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36036796

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/farmacología , Bleomicina , Heparina , Inflamación , Factor de Crecimiento Epidérmico/farmacología
2.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L518-L532, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231378

RESUMEN

Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to cross talk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes, which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared with alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models aligns pulmonary fibrosis with M2 macrophages. In this study, we performed RNA sequencing (RNAseq) to fully characterize M1- vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration and proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Macrófagos/metabolismo , Fibrosis Pulmonar/metabolismo , RNA-Seq , Células Epiteliales Alveolares/patología , Animales , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Femenino , Fibroblastos/patología , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología
3.
J Comp Physiol B ; 189(6): 685-692, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31552491

RESUMEN

The diving response is a coordinated physiological response to submersion under water and has been documented amongst all mammals tested to date. The physiological response consists of three primary reflexes: an immediate bradycardia, apnea, and selective constriction of peripheral blood vessels. We hypothesized that mice would exhibit a diving response upon voluntary submersion into water typically seen in other mammals. In this study, telemeters that measure arterial pressure were implanted into male and female C57Bl/6J mice. These mice were trained to voluntarily dive underwater for a distance of 40 cm over a 4-6 s period. Just before the dive, the interbeat interval (IBI) was 87 ± 6 ms (mean ± SD) and diastolic pressure was 99 ± 14 mmHg. Underwater submersion caused (1) a dramatic bradycardia immediately at the onset of each dive, as IBI increased to 458 ± 104 ms, and (2) a large drop in diastolic pressure, to 56 ± 16 mmHg despite the elevation in peripheral resistance. Mice experienced a short bout (~ 2 s) of hypertension (diastolic pressure rose to 131 ± 17 mmHg) upon emergence. The bradycardia and hypotension appeared to be vagally mediated, since both these responses were blocked with atropine pre-treatment. These data demonstrate that the mouse exhibits a robust diving response upon voluntary submersion into water.


Asunto(s)
Presión Arterial/fisiología , Reflejo de Inmersión/fisiología , Frecuencia Cardíaca/fisiología , Ratones Endogámicos C57BL/fisiología , Animales , Femenino , Masculino , Ratones , Natación
4.
Clin Transl Immunology ; 8(6): e1065, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293783

RESUMEN

Lung fibrosis is characterised by the accumulation of extracellular matrix within the lung and is secondary to both known and unknown aetiologies. This accumulation of scar tissue limits gas exchange causing respiratory insufficiency. The pathogenesis of lung fibrosis is poorly understood, but immunologic-based treatments have been largely ineffective. Despite this, accumulating evidence suggests that innate immune cells and receptors play important modulatory roles in the initiation and propagation of the disease. Paradoxically, while innate immune signalling may be important for the pathogenesis of fibrosis, there is also evidence to suggest that innate immune function against pathogens may be impaired, leading to dysregulated and/or impaired host defence. This review summarises the evidence for this pathologic two-way street, highlights new concepts of pathogenesis and recommends future directions for research emphasis.

5.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R461-R469, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290685

RESUMEN

Alternate-day fasting (ADF) is effective for weight loss and increases insulin sensitivity in diet-induced obese rodents. However, the efficacy of ADF in genetic models of obesity has not been comprehensively studied. Mice that are deficient in leptin (ob/ob mice) are obese, diabetic, and prone to deep bouts of torpor when fasted. We tested the hypotheses that an ADF protocol in ob/ob mice would result in 1) induction of torpor on fasted days, 2) minimal body weight loss if the mice experienced torpor, and 3) no improvement in glucose control in the absence of weight loss. Female ob/ob mice and littermate controls were assigned to 1) an ad libitum regimen or 2) an ADF regimen, consisting of fasting every other day with ad libitum feeding between fasts. Over a 19-day period, littermate control mice on the ADF regimen consumed the same amount of food as littermate control mice on the ad libitum regimen, whereas the ADF ob/ob mice consumed 37% less food than ad libitum ob/ob mice. Fasting days, but not fed days, led to torpor in both genotypes. Fasting days, but not fed days, led to weight loss in both genotypes relative to ad libitum controls. Fasting days, but not fed days, produced enhanced insulin sensitivity in both genotypes and normalized circulating glucose in ob/ob mice. These data demonstrate improved glucose control on fasting days with the use of ADF in a genetic model of obesity in the face of minimal weight loss.


Asunto(s)
Privación de Alimentos , Glucosa/metabolismo , Pérdida de Peso , Animales , Glucemia , Temperatura Corporal , Ratones , Ratones Obesos
6.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1035-L1048, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30838865

RESUMEN

Protein phosphatase 2A (PP2A), a ubiquitously expressed Ser/Thr phosphatase is an important regulator of cytokine signaling and cell function. We previously showed that myeloid-specific deletion of PP2A (LysMcrePP2A-/-) increased mortality in a murine peritoneal sepsis model. In the current study, we assessed the role of myeloid PP2A in regulation of lung injury induced by lipopolysaccharide (LPS) or bleomycin delivered intratracheally. LysMcrePP2A-/- mice experienced increased lung injury in response to both LPS and bleomycin. LysMcrePP2A-/- mice developed more exuberant fibrosis in response to bleomycin, elevated cytokine responses, and chronic myeloid inflammation. Bone marrow-derived macrophages (BMDMs) from LysMcrePP2A-/- mice showed exaggerated inflammatory cytokine release under conditions of both M1 and M2 activation. Notably, secretion of IL-10 was elevated under all stimulation conditions, including activation of BMDMs by multiple Toll-like receptor ligands. Supernatants collected from LPS-stimulated LysMcrePP2A-/- BMDMs induced epithelial cell apoptosis in vitro but this effect was mitigated when IL-10 was also depleted from the BMDMs by crossing LysMcrePP2A-/- mice with systemic IL-10-/- mice (LysMcrePP2A-/- × IL-10-/-) or when IL-10 was neutralized. Despite these findings, IL-10 did not directly induce epithelial cell apoptosis but sensitized epithelial cells to other mediators from the BMDMs. Taken together our results demonstrate that myeloid PP2A regulates production of multiple cytokines but that its effect is most pronounced on IL-10 production. Furthermore, IL-10 sensitizes epithelial cells to apoptosis in response to myeloid-derived mediators, which likely contributes to the pathogenesis of lung injury and fibrosis in this model.


Asunto(s)
Células Epiteliales/metabolismo , Interleucina-10/metabolismo , Lesión Pulmonar/patología , Proteína Fosfatasa 2/genética , Fibrosis Pulmonar/patología , Animales , Apoptosis/genética , Bleomicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Síndrome de Dificultad Respiratoria/patología
7.
Mucosal Immunol ; 12(2): 518-530, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30498200

RESUMEN

Post influenza bacterial pneumonia is associated with significant mortality and morbidity. Dendritic cells (DCs) play a crucial role in host defense against bacterial pneumonia, but their contribution to post influenza-susceptibility to secondary bacterial pneumonia is incompletely understood. WT and CCR2-/- mice were infected with 100 plaque forming units (pfu) H1N1 intranasally alone or were challenged on day 5 with 7 × 107 colony forming units (cfu) methicillin-resistant Staphylococcus aureus intratracheally. WT mice express abundant CCL2 mRNA and protein post-H1N1 alone or dual infection. CCR2-/- mice had significantly higher survival as compared to WT mice, associated with significantly improved bacterial clearance at 24 and 48 h (10-fold and 14-fold, respectively) post bacterial challenge. There was robust upregulation of IL-23 and IL-17 as well as downregulation of IL-27 expression in CCR2-/- mice following sequential infection as compared to WT mice, which was also associated with significantly greater accumulation of CD103+ DC. Finally, WT mice treated with a CCR2 inhibitor showed improved bacterial clearance in association with similar cytokine profiles as CCR2-/- mice. Thus, CCR2 significantly contributes to increased susceptibility to bacterial infection after influenza pneumonia likely via altered dendritic cell responses and thus, CCR2 antagonism represents a potential therapeutic strategy.


Asunto(s)
Células Dendríticas/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interleucina-17/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Neumonía Bacteriana/inmunología , Receptores CCR2/metabolismo , Células Th17/fisiología , Animales , Antígenos CD/metabolismo , Células Cultivadas , Susceptibilidad a Enfermedades , Humanos , Gripe Humana/terapia , Cadenas alfa de Integrinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/terapia , Neumonía Bacteriana/terapia , Receptores CCR2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA