Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 6(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408224

RESUMEN

Traditionally, treatments for bacterial infection have focused on killing the microbe or preventing its growth. As antimicrobial resistance becomes more ubiquitous, the feasibility of this approach is beginning to wane and attention has begun to shift toward disrupting the host-pathogen interaction by improving the host defense. Using a high-throughput, fragment-based screen to identify compounds that alleviate Pseudomonas aeruginosa-mediated killing of Caenorhabditis elegans, we identified over 20 compounds that stimulated host defense gene expression. Five of these molecules were selected for further characterization. Four of five compounds showed little toxicity against mammalian cells or worms, consistent with their identification in a phenotypic, high-content screen. Each of the compounds activated several host defense pathways, but the pathways were generally dispensable for compound-mediated rescue in liquid killing, suggesting redundancy or that the activation of unknown pathway(s) may be driving compound effects. A genetic mechanism was identified for LK56, which required the Mediator subunit MDT-15/MED15 and NHR-49/HNF4 for its function. Interestingly, LK32, LK34, LK38, and LK56 also rescued C. elegans from P. aeruginosa in an agar-based assay, which uses different virulence factors and defense mechanisms. Rescue in an agar-based assay for LK38 entirely depended upon the PMK-1/p38 MAPK pathway. Three compounds-LK32, LK34, and LK56-also conferred resistance to Enterococcus faecalis, and the two lattermost, LK34 and LK56, also reduced pathogenesis from Staphylococcus aureus This study supports a growing role for MDT-15 and NHR-49 in immune response and identifies five molecules that have significant potential for use as tools in the investigation of innate immunity.IMPORTANCE Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: the nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. One idea is to stimulate host defense pathways to improve the clearance of bacterial infection. Here, we describe five small molecules that promote resistance to infectious bacteria by activating C. elegans' innate immune pathways. Several are effective against both Gram-positive and Gram-negative pathogens. One of the compounds was mapped to the action of MDT-15/MED15 and NHR-49/HNF4, a pair of transcriptional regulators more generally associated with fatty acid metabolism, potentially highlighting a new link between these biological functions. These studies pave the way for future characterization of the anti-infective activity of the molecules in higher organisms and highlight the compounds' potential utility for further investigation of immune modulation as a novel therapeutic approach.


Asunto(s)
Antibacterianos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/inmunología , Factores Inmunológicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/inmunología , Animales , Antibacterianos/análisis , Antibacterianos/inmunología , Infecciones Bacterianas/tratamiento farmacológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/patogenicidad , Expresión Génica , Regulación de la Expresión Génica , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/química , Pseudomonas aeruginosa/patogenicidad , Bibliotecas de Moléculas Pequeñas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Factores de Virulencia
2.
J Med Microbiol ; 69(6): 881-894, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32163353

RESUMEN

Introduction. Antimicrobial development is being outpaced by the rising rate of antimicrobial resistance in the developing and industrialized world. Drug repurposing, where novel antibacterial functions can be found for known molecular entities, reduces drug development costs, reduces regulatory hurdles, and increases rate of success.Aim. We sought to characterize the antimicrobial properties of five known bioactives (DMAQ-B1, carboplatin, oxaliplatin, CD437 and PSB-069) that were discovered in a high-throughput phenotypic screen for hits that extend Caenorhabditis elegans survival during exposure to Pseudomonas aeruginosa PA14.Methodology. c.f.u. assays, biofilm staining and fluorescence microscopy were used to assay the compounds' effect on various virulence determinants. Checkerboard assays were used to assess synergy between compounds and conventional antimicrobials. C. elegans-based assays were used to test whether the compounds could also rescue against Enterococcus faecalis and Staphyloccus aureus. Finally, toxicity was assessed in C. elegans and mammalian cells.Results. Four of the compounds rescued C. elegans from a second bacterial pathogen and two of them (DMAQ-B1, a naturally occurring insulin mimetic, and CD437, an agonist of the retinoic acid receptor) rescued against all three. The platinum complexes displayed increased antimicrobial activity against P. aeruginosa. Of the molecules tested, only CD437 showed slight synergy with ampicillin. The two most effective compounds, DMAQ-B1 and CD437, showed toxicity to mammalian cells.Conclusion. Although these compounds' potential for repurposing is limited by their toxicity, our results contribute to this growing field and provide a simple road map for using C. elegans for preliminary testing of known bioactive compounds with predicted antimicrobial activity.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Animales , Bacterias/metabolismo , Biopelículas/efectos de los fármacos , Caenorhabditis elegans/microbiología , Células Cultivadas , Reposicionamiento de Medicamentos/métodos , Mamíferos/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...