Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202401176, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967038

RESUMEN

Due to their abundant active sites and porous structures, metal-organic frameworks (MOFs) have garnered significant interest as oxygen evolution reaction (OER) electrocatalysts. Nevertheless, the development of MOF-based electrocatalysts with efficient OER activity and excellent stability simultaneously still faces challenges. Herein, a cathodic activation strategy was used to enhance the OER electrocatalytic performance of M-HHTP for the first time, where M refers to Ni, Cu, Co, Fe, while HHTP denotes 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene. As a prototype, the activated Ni-HHTP (HA-Ni-HHTP) demonstrates outstanding OER performance, with an overpotential as low as 140 mV at 20 mA cm-2 and a small Tafel slope of 78.7 mV-1, surpassing commercial RuO2 and rivaling state-of-the-art MOFs-based electrocatalysts. Characterizations and density functional theory calculations reveal that the superior performance of HA-Ni-HHTP is primarily ascribed to changes in semiconductor type, contact angle, and oxygen vacancy content induced by cathodic activation. Electrochemical impedance spectroscopy analysis using the transmission line model confirms that cathodic activation accelerates charge transport, enhancing the OER process. Furthermore, the cathodic activation strategy holds promise for improving the water oxidation performance of other MOFs such as Fe-HHTP, Co-HHTP, and Cu-HHTP.

2.
Chem Sci ; 15(23): 8731-8739, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873073

RESUMEN

The light-intensity dependence of multi-photon absorption (MPA) affords outstanding spatial control. Furthermore, compared to the higher-energy photons needed for analogous linear absorption, the lower-energy photons involved in MPA often correspond to important wavelengths, such as those of the biological and telecommunications "windows". It is therefore of crucial importance to develop molecules that exhibit outstanding MPA cross-sections. However, although progress has been made with two-photon absorption, there is currently a dearth of efficient instantaneous n-photon absorbers (n > 2), a key reason being the scarcity of structure-property studies required to understand higher-order MPA. We herein report systematically-varied metallodendrimers up to third-generation in size, together with their nonlinear absorptive responses over the spectral range 600-2520 nm. We show that the dendrimers exhibit exceptional instantaneous three- to six-photon absorption cross-sections, with maximal values increasing with dendrimer generation and installation of solubilizing group, and we report that changing the groups at the dendrimer periphery can shift the wavelengths of the nPA maxima. We also describe time-dependent DFT studies that have facilitated assignment of the key linear and nonlinear transitions and disclosed the crucial role of the metal in the outstanding MPA performance.

3.
Angew Chem Int Ed Engl ; : e202406941, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785100

RESUMEN

Nonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn-Teller distortion in a Mott-Hubbard system, (MA)2CuX4 (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)2CuCl4, demonstrates a nonlinear absorption coefficient of (1.5±0.08)×105 cm GW-1, a modulation depth of 60 %, and a relatively low optical limiting threshold of 1.22×10-5 J cm-2. These outstanding attributes surpass those of most reported NLO materials. Our investigation reveals that a more pronounced distortion of the [CuX6]4- octahedron emerges as a crucial factor in augmenting optical nonlinearity. Mechanism study involving structural and spectral characterization along with theoretical calculations indicates a correlation between the compelling performance and the Mott-Hubbard band structure of the materials, coupled with the Jahn-Teller distortion-induced d-d transition. This study not only introduces a promising category of high-performance NLO materials but also provides novel insights into enhancing the performance of such materials.

4.
Angew Chem Int Ed Engl ; 63(28): e202403328, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38662352

RESUMEN

Solid-state structures with the superhalogen [BO2]- have thus far only been observed with a few compounds whose syntheses require high reaction temperatures and complicated procedures, while their optical properties remain almost completely unexplored. Herein, we report a facile, energy-efficient synthesis of the first [BO2]-based deep-ultraviolet (deep-UV) transparent oxide K9[B4O5(OH)4]3(CO3)(BO2) ⋅ 7H2O (KBCOB). Detailed structural characterization and analysis confirm that KBCOB possesses a rare four-in-one three-dimensional quasi-honeycomb framework, with three π-conjugated anions ([BO2]-, [BO3]3-, and [CO3]2-) and one non-π-conjugated anion ([BO4]5-) in the one crystal. The evolution from the traditional halogenated nonlinear optical (NLO) analogues to KBCOB by superhalogen [BO2]- substitution confers deep-UV transparency (<190 nm), a large second-harmonic generation response (1.0×KH2PO4 @ 1064 nm), and a 15-fold increase in birefringence. This study affords a new route to the facile synthesis of functional [BO2]-based oxides, paving the way for the development of next-generation high-performing deep-UV NLO materials.

5.
J Am Chem Soc ; 146(14): 9975-9983, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38466811

RESUMEN

Oxides have attracted considerable attention owing to their potential for nonlinear optical (NLO) applications. Although significant progress has been achieved in optimizing the structural characteristics of primitives (corresponding to the simplest constituent groups, namely, cations/anions/neutral molecules) comprising the crystalline oxides, the role of the primitives' interaction in determining the resultant functional structure and optical properties has long been underappreciated and remains unclear. In this study, we employ a π-conjugated organic primitive confinement strategy to manipulate the interactions between primitives in antimonates and thereby significantly enhance the optical nonlinearity. Chemical bonds and relatively weak H-bonding interactions promote the formation of cis- and trans-Sb(III)-based dimer configurations in (C5H5NO)(Sb2OF4) (4-HPYSOF) and (C5H7N2)(Sb2F7) (4-APSF), respectively, resulting in very different second-harmonic generation (SHG) efficiencies and birefringences. In particular, 4-HPYSOF displays an exceptionally strong SHG response (12 × KH2PO4 at 1064 nm) and a large birefringence (0.513 at 546 nm) for a Sb(III)-based NLO oxide as well as a UV cutoff edge. Structural analyses and theoretical studies indicate that polarized ionic bond interactions facilitate the favorable arrangement of both the inorganic and organic primitives, thereby significantly enhancing the optical nonlinearity in 4-HPYSOF. Our findings shed new light on the intricate correlations between the interactions of primitives, inorganic primitive configuration, and SHG properties, and, more broadly, our approach provides a new perspective in the development of advanced NLO materials through the interatomic bond engineering of oxides.

6.
Adv Sci (Weinh) ; 11(12): e2306670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288532

RESUMEN

Large birefringence is a crucial but hard-to-achieve optical parameter that is a necessity for birefringent crystals in practical applications involving modulation of the polarization of light in modern opto-electronic areas. Herein, an oxyanion polymerization strategy that involves the combination of two different types of second-order Jahn-Teller distorted units is employed to realize giant anisotropy in a covalent molybdenum tellurite. Mo(H2O)Te2O7 (MTO) exhibits a record birefringence value for an inorganic UV-transparent oxide crystalline material of 0.528 @ 546 nm, which is also significantly larger than those of all commercial birefringent crystals. MTO has a UV absorption edge of 366 nm and displays a strong powder second-harmonic generation response of 5.4 times that of KH2PO4. The dominant roles of the condensed polytellurite oxyanions [Te8O20]8- in combination with the [MoO6]6- polyhedra in achieving the giant birefringence in MTO are clarified by structural analysis and first-principles calculations. The results suggest that polymerization of polarizability-anisotropic oxyanions may unlock the promise of birefringent crystals with exceptional birefringence.

7.
Angew Chem Int Ed Engl ; 63(10): e202318107, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38116843

RESUMEN

Considerable effort has been invested in the development of non-centrosymmetric (NCS) inorganic solids for ferroelectricity-, piezoelectricity- and, particularly, optical nonlinearity-related applications. While great progress has been made, a persistent problem is the difficulty in constructing NCS materials, which probably stems from non-directionality and unsaturation of the ionic bonds between metal counter-cations and covalent anionic modules. We report herein a secondary-bond-driven approach that circumvents the cancellation of dipole moments between adjacent anionic modules that has plagued second-harmonic generation (SHG) material design, and which thereby affords a polar structure with strong SHG properties. The resultant first NCS counter-cation-free iodate, VO2 (H2 O)(IO3 ) (VIO), a new class of iodate, crystallizes in a polar lattice with ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] zigzag chains connected by weak hydrogen bonds and intermolecular forces. VIO exhibits very large SHG responses (18 × KH2 PO4 @ 1200 nm, 1.5 × KTiOPO4 @ 2100 nm) and sufficient birefringence (0.184 @ 546 nm). Calculations and crystal structure analysis attribute the large SHG responses to consistent polarization orientations of the ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] chains controlled by secondary bonds. This study highlights the advantages of manipulating the secondary bonds in inorganic solids to control NCS structure and optical nonlinearity, affording a new perspective in the development of high-performance NLO materials.

8.
Angew Chem Int Ed Engl ; 62(52): e202315133, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37926678

RESUMEN

The development of urgently-needed ultraviolet (UV)/deep-UV nonlinear optical (NLO) materials has been hindered by contradictory requirements of the microstructure, in particular the need for a strong second-harmonic generation (SHG) response as well as a short phase-matching (PM) wavelength. We herein employ a "de-covalency" band gap engineering strategy to adjust the optical linearity and nonlinearity. This has been achieved by assembling two types of transition-metal (TM) polyhedra ([TaO2 F4 ] and [TaF7 ]), affording the first tantalum-based deep-UV-transparent NLO materials, A5 Ta3 OF18 (A = K (KTOF), Rb (RTOF)). Experimental and theoretical studies reveal that the highly ionic bonds and strong electropositivity of tantalum in the two oxyfluorides induce record short PM wavelengths (238 (KTOF) and 240 (RTOF) nm) for d0 -TM-centered oxides, in addition to strong SHG responses (2.8 × KH2 PO4 (KTOF) and 2.6 × KH2 PO4 (RTOF)), and sufficient birefringences (0.092 (KTOF) and 0.085 (RTOF) at 546 nm). These results not only broaden the available strategies for achieving deep-UV NLO materials by exploiting the currently neglected d0 -TMs, but also push the shortest PM wavelength into the short-wavelength UV region.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37878409

RESUMEN

Perovskite layer defects are a primary inhibiting factor for their optical nonlinearity, which restricts their use in nonlinear photonics devices. Nevertheless, due to the variety of defect types, the passivation and repair of these defects remain challenging. Herein, a novel bifunctional passivation strategy was proposed, and the porphyrin with a donor-π-acceptor structure was designed to bifunctionally repair perovskite defects by linking different types of functional groups via acetylenic π-conjugated linkage bridges on both sides, thus improving the nonlinear optical (NLO) absorption properties of porphyrin-perovskite hybrid materials. Research results indicate that the amino and carboxyl groups of porphyrins endow the ability to bifunctionally passivate charged defects via effective coordination interactions. The nonlinear absorption properties of all porphyrin-passivated MAPbI3 films were remarkably enhanced compared to that of the MAPbI3 film across multiple wavelengths and temporal domains. Particularly, the Por3-passivated perovskite film (MAPbI3/Por3) exhibited optimized strongest NLO performance, including reverse saturable absorption (RSA) under 800 nm femtosecond (fs) and 1064 nm nanosecond (ns) laser irradiations, as well as saturable absorption (SA) with 515 and 532 nm ns laser excitations. The value of the NLO absorption coefficient (ß = 266.23 cm GW-1) is 1 order of magnitude higher than that of the pristine perovskite film (ß = 12.93 cm GW-1), also outperforming other porphyrin-passivated perovskite films and some reported materials. The bifunctional passivation mechanism of porphyrin not only intensifies the perovskite's photoinduced ground-state dipole moment in the two-photon absorption (TPA) process and the free carrier absorption ability to deepen the RSA properties under 800 nm fs and 1064 nm ns lasers, respectively, but also enables the improvement of SA responses under 515 nm fs and 532 nm ns lasers by expediting the Pauli blocking effect of perovskite. Our study offers a viable paradigm, which aims at exploiting high-performance NLO perovskite materials across wide spectral regions and time scales.

10.
Angew Chem Int Ed Engl ; 62(42): e202310835, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37610762

RESUMEN

Second-harmonic generation (SHG) is a fundamental optical property of nonlinear optical (NLO) crystals. Thus far, it has proved difficult to engineer large SHG responses, particularly in the mid-infrared region, owing to the difficulty in simultaneously controlling the arrangement and density of functional NLO-active units. Herein, a new assembly strategy employing functional modules only, and aimed at maximizing the density and optimizing the spatial arrangement of highly efficient functional modules, has been applied to the preparation of NLO crystals, affording the van der Waals crystal MoO2 Cl2 . This exhibits the strongest powder SHG response (2.1×KTiOPO4 (KTP) @ 2100 nm) for a transition-metal oxyhalide, a wide optical transparency window, and a sufficient birefringence. MoO2 Cl2 is the first SHG-active transition-metal oxyhalide effective in the infrared region. Theoretical studies and crystal structure analysis suggest that the densely packed, optimally-aligned [MoO4 Cl2 ] modules within the two-dimensional van der Waals layers are responsible for the giant SHG response.

11.
Angew Chem Int Ed Engl ; 62(39): e202309365, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37531147

RESUMEN

The design of efficient nonlinear optical (NLO) crystals continues to pose significant challenges due to the difficulty of assembling polar NLO-active modules in an optimal additive fashion. We report herein the first NLO-active mercuric nitrates A2 Hg(NO3 )4 (A=(KHNO), Rb (RHNO)), for which assembly is induced by ionic polarization of the d10 cations. The two new crystalline compounds are isostructural, featuring interesting pseudo-diamond-like structures with parallel [Hg(NO3 )4 ] modules, and leading to strong powder second-harmonic generation (SHG) responses of 9.2 (KHNO) and 8.8 (RHNO) times that of KH2 PO4 . In combination with the simple solution preparation of centimeter-scale crystals, sufficient birefringence, and short ultraviolet (UV) cutoff edges, these attributes make KHNO and RHNO promising candidates for UV NLO materials. Theoretical calculations and single-crystal structure analysis reveal that the newly-developed highly condensed and distorted [Hg(NO3 )4 ] module, with an Hg2+ cation that is quadruply bidentate nitrate-ligated, is crucial for the significant SHG responses. This work highlights the potential importance of modules with multiple bidentate ligands for the development of high-performing next-generation NLO materials.

12.
Chem Soc Rev ; 52(13): 4443-4487, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37337858

RESUMEN

Supramolecular chirality is involved not only in biological events such as gene communication, replication, and enzyme catalysis but also in artificial self-assembly systems and aggregated materials. The precise control of supramolecular chirality, and especially supramolecular chirality inversion (SMCI), would deepen the understanding of chiral transfer and regulation in both living systems and artificial self-assembly systems, providing efficient ways to construct advanced chiral materials with an optimum assembly pathway necessary for various functions. In this review, the fundamental principles of SMCI are comprehensively summarized, with a focus on the helical assemblies having opposite handedness or chiroptical properties of the compositions. Thereafter, various SMCI strategies that have been developed for chiral nanostructures and assembled materials are systematically reviewed, and the promising applications of SMCI, including chiroptical switches, chiral recognition, enantiomeric separation, asymmetric catalysis, chiral optoelectronic materials, chiral spin filters, and biomedical uses, are highlighted accordingly. Finally, the scientific challenges and future perspectives for assembling materials with SMCI are also discussed.

13.
RSC Adv ; 13(14): 9333-9346, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36959884

RESUMEN

Nine tridentate Schiff base ligands of the type (N^N^O) were synthesized from reactions of primary amines {2-picolylamine (Py), N-phenyl-1,2-diaminobenzene (PhN), and N-phenyl-1,2-diaminoethane(EtN)} and salicylaldehyde derivatives {3-ethoxy (OEt), 4-diethylamine (NEt2) and 4-hydroxy (OH)}. Complexes with the general formula Pt(N^N^O)Cl were synthesized by reacting K2PtCl4 with the ligands in DMSO/ethanol mixtures. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. The DNA-binding behaviours of the platinum(ii) complexes were investigated by two techniques, indicating good binding affinities and a two-stage binding process for seven complexes: intercalation followed by switching to a covalent binding mode over time. The other two complexes covalently bond to ct-DNA without intercalation. Theoretical calculations were used to shed light on the electronic and steric factors that lead to the difference in DNA-binding behavior. The reactions of some platinum complexes with guanine were investigated experimentally and theoretically. The binding of the complexes with bovine serum albumin (BSA) indicated a static interaction with higher binding affinities for the ethoxy-containing complexes. The half maximal inhibitory concentration (IC50) values against MCF-7 and HepG2 cell lines suggest that platinum complexes with tridentate ligands of N-phenyl-o-phenylenediamine or pyridyl with 3-ethoxysalicylimine are good chemotherapeutic candidates. Pt-Py-OEt and Pt-PhN-OEt have IC50 values against MCF-7 of 13.27 and 10.97 µM, respectively, compared to 18.36 µM for cisplatin, while they have IC50 values against HepG2 of 6.99 and 10.15 µM, respectively, compared to 19.73 µM for cisplatin. The cell cycle interference behaviour with HepG2 of selected complexes is similar to that of cisplatin, suggesting apoptotic cell death. The current work highlights the impact of the tridentate ligand on the biological properties of platinum complexes.

14.
ACS Appl Mater Interfaces ; 15(8): 10858-10867, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802476

RESUMEN

Lead-free perovskites have attracted increasing attention because they can address the toxicity and instability problems inherent to lead-halide perovskites. Furthermore, the nonlinear optical (NLO) properties of lead-free perovskites are rarely explored. Herein, we report significant NLO responses and defect-dependent NLO behavior of Cs2AgBiBr6. Specifically, a thin film of pristine Cs2AgBiBr6 exhibits strong reverse saturable absorption (RSA), while a film of Cs2AgBiBr6 with defects (denoted as Cs2AgBiBr6(D)) shows saturable absorption (SA). The nonlinear absorption coefficients are ca. 4.0 × 104 cm GW-1 (515 nm laser excitation) and 2.6 × 104 cm GW-1 (800 nm laser excitation) for Cs2AgBiBr6 and -2.0 × 104 cm GW-1 (515 nm laser excitation) and -7.1 × 103 cm GW-1 (800 nm laser excitation) for Cs2AgBiBr6(D). The optical limiting threshold of Cs2AgBiBr6 is 8.1 × 10-4 J cm-2 (515 nm laser excitation). The samples show excellent long-term performance stability in air. The RSA of pristine Cs2AgBiBr6 correlates with excited-state absorption (515 nm laser excitation) and excited-state absorption following two-photon absorption (800 nm laser excitation), while the defects in Cs2AgBiBr6(D) strengthen the ground-state depletion and Pauli blocking, resulting in SA.

15.
J Am Chem Soc ; 145(5): 3040-3046, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36634002

RESUMEN

The development of deep-ultraviolet (DUV)/solar-blind UV nonlinear optical (NLO) crystals simultaneously possessing wide UV transparency, strong second-harmonic generation (SHG) response, and suitable birefringence is a major challenge in advanced laser technology. We herein propose a "cation compensation" strategy for strong optical nonlinearity in inorganic solids that is exemplified by the introduction of strongly electropositive transition metals (TMs). Following this strategy, the first d0 TM UV-transparent NLO sulfates, MF2(SO4) (M = Zr (ZFSO), Hf (HFSO)), have been synthesized. Short UV cutoff edges of 206 nm and below 190 nm are observed for bulk ZFSO and HFSO crystals, respectively, together with the strongest powder SHG responses (3.2 × (ZFSO) and 2.5 × KDP (HFSO)) for solar-blind UV/DUV NLO sulfates, as well as suitable birefringence. This work provides a new and efficient approach to the development of urgently needed high-performance NLO materials for applications in the short-wavelength UV region.

16.
RSC Adv ; 12(42): 27582-27595, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36276022

RESUMEN

Three tridentate Schiff base ligands were synthesized from the reactions between 2-picolylamine and salicylaldehyde derivatives (3-ethoxy (OEt), 4-diethylamino (NEt2) and 4-hydroxy (OH)). Complexes with the general formula Pt(N^N^O)Cl were obtained from reactions between the ligands and K2PtCl4. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. Further confirmation of the structure of Pt-OEt was achieved by single-crystal X-ray diffraction. The DMSO/chlorido exchange process at Pt-OEt was investigated by monitoring the change in conductivity, revealing very slow dissociation in DMSO. Moreover, solvent/chlorido exchange for Pt-OEt and Pt-NEt2 were investigated by NMR spectroscopy in DMSO and DMSO/D2O; Pt-NEt2 forms an adduct with DMSO while Pt-OEt forms adducts with DMSO and water. The DNA-binding behaviour of the platinum(ii) complexes was investigated by two techniques. Pt-NEt2 has the best apparent binding constant. The intercalation mode of interaction with ct-DNA was suggested by molecular docking studies and the increase in the relative viscosity of ct-DNA with increasing concentrations of the platinum(ii) complexes. However, the gradual decrease in the relative viscosity over time at constant concentration of platinum(ii) complexes indicated a shift from intercalation to a covalent binding mode. Anticancer activities of the ligands and their platinum(ii) complexes were examined against two cell lines. The platinum(ii) complexes exhibit superior cytotoxicity to that of their ligands. Among the platinum(ii) complexes, Pt-OEt possesses the best IC50 against both cell lines, its cytotoxicity being comparable to that observed for cisplatin. Cell cycle arrest in the HepG2 cell line upon treatment with Pt-OEt and Pt-NEt2 was investigated and compared to that of cisplatin; the change in the cell accumulation patterns supports the presumption of an apoptotic cell death pathway. The optimized structures of the B-DNA trimer adducts with the platinum complexes showed hydrogen-bonding interactions between the ligands and nucleobases, affecting the inter-strand hydrogen bonding within the DNA, and highlighting the strong ability of the complexes to induce conformational changes in the DNA, leading to the activation of apoptotic cell death. In summary, the current study demonstrates promising new anticancer platinum(ii) complexes with highly flexible tridentate ligands; the functional groups on the ligands are important in tuning their DNA binding/anticancer properties.

17.
Chem Sci ; 13(35): 10260-10266, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277635

RESUMEN

A wide bandgap is an essential requirement for a nonlinear optical (NLO) material. However, it is very challenging to simultaneously engineer a wide bandgap and a strong second-harmonic generation (SHG) response, particularly in NLO materials containing second-order Jahn-Teller (SOJT) distorted units. Herein, we employ a bandgap engineering strategy that involves the dual fluorination of two different types of SOJT distorted units to realize remarkably wide bandgaps in the first examples of 5d0-transition metal (TM) fluoroiodates. Crystalline A2WO2F3(IO2F2) (A = Rb (RWOFI) and Cs (CWOFI)) exhibit the largest bandgaps yet observed in d0-TM iodates (4.42 (RWOFI) and 4.29 eV (CWOFI)), strong phase-matching SHG responses of 3.8 (RWOFI) and 3.5 (CWOFI) × KH2PO4, and wide optical transparency windows. Computational studies have shown that the excellent optical responses result from synergism involving the two fluorinated SOJT distorted units ([WO3F3]3- and [IO2F2]-). This work provides not only an efficient strategy for bandgap modulation of NLO materials, but also affords insight into the relationship between the electronic structure of the various fluorinated SOJT distorted units and the optical properties of crystalline materials.

18.
J Am Chem Soc ; 144(44): 20394-20399, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36260708

RESUMEN

Second-harmonic generation (SHG) is of great technological importance for applications in nonlinear optics, but it remains challenging to engineer large SHG responses in the short-wavelength ultraviolet (UV) region owing to competing microstructure requirements. Herein, we report the first examples of d0 transition-metal-based (TM-based) deep-UV-transparent nonlinear optical (NLO) crystals MOF4H2 (M = Zr (ZOF), Hf (HOF)), which exhibit unprecedented short UV absorption edges (below 190 nm). Evolving from the KTiOPO4 (KTP) structure by an isoreticular node substitution strategy, the three-dimensional frameworks of ZOF and HOF consist of corner-sharing [MO2F6] moieties that are new functional units in deep-UV NLO material design, conferring wide UV transparency and strong phase-matchable SHG response (2.2 × KH2PO4 (ZOF) and 1.8 × KH2PO4 (HOF) at 1064 nm). Such d0-TM-based [MO2F6] polyhedra preclude deleterious d-d electronic transitions, resulting in significantly blue-shifted UV absorption edges of ZOF and HOF (<190 nm). The d0-TM-based [MO2F6] polyhedra introduced in this work offer a new perspective in the construction of deep-UV transparent NLO materials, demonstrating the feasibility of an isoreticular design strategy in developing functional NLO materials.

19.
Angew Chem Int Ed Engl ; 61(37): e202208168, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35778270

RESUMEN

Multi-photon absorption (MPA) is of increasing interest for applications in technologically important "windows" of the electromagnetic spectrum (near-infrared III, NIR-III, 1550-1870 nm; and the new 2080-2340 nm region); however, few molecules exist that display strong MPA at these long wavelengths. We herein report the syntheses of the first 2,5,8-s-heptazine-cored organometallic complexes, together with organic analogues. The complexes exhibit outstanding 3PA cross-sections in the NIR-III and exceptional 4PA cross-sections in the new 2080-2340 nm window. We demonstrate that replacing organic donor groups by organometallic units results in an order of magnitude increase in 3PA, the "switching on" of 4PA, and a dramatic improvement in photo-stability. Our results highlight the impressive outcomes possible with an "organometalation" approach to NLO materials design.

20.
Angew Chem Int Ed Engl ; 61(36): e202208514, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35818130

RESUMEN

Noncentrosymmetric (NCS) solids have attracted interest for their potential in ferroelectric, piezoelectric, and nonlinear optical (NLO) devices, but their synthesis remains a major challenge. In this study, the additive Li2 CO3 triggers formation of an NCS precursor at an early nucleation stage, and plays a crucial role in the successful polymorphism transformation. The resultant metastable ß-Sc(IO3 )3 is a promising mid-infrared NLO crystal, with the strongest second-harmonic generation responses (2.2×KTiOPO4 @ 2100 nm, 16×KH2 PO4 @ 1064 nm) and the largest optical band gap (4.52 eV) for a rare-earth iodate, as well as sufficient birefringence (Δn=0.219 @ 546 nm) for type I phase-matching, and wide optical transparency, which are induced by optimal alignment of the iodate anions. This study reveals the key role of additives in the growth of polar NCS solids, a discovery with implications for the strategic design of new NCS polymorphism materials with exceptional NLO properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...