Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372152

RESUMEN

Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Secuencia de Aminoácidos/genética , Animales , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Simulación por Computador , Bases de Datos Genéticas , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Neuropéptidos/metabolismo , Filogenia , Transducción de Señal/fisiología
2.
Nat Commun ; 10(1): 1012, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833557

RESUMEN

Amphiphilicity in ɑ-helical antimicrobial peptides (AMPs) is recognized as a signature of potential membrane activity. Some AMPs are also strongly immunomodulatory: LL37-DNA complexes potently amplify Toll-like receptor 9 (TLR9) activation in immune cells and exacerbate autoimmune diseases. The rules governing this proinflammatory activity of AMPs are unknown. Here we examine the supramolecular structures formed between DNA and three prototypical AMPs using small angle X-ray scattering and molecular modeling. We correlate these structures to their ability to activate TLR9 and show that a key criterion is the AMP's ability to assemble into superhelical protofibril scaffolds. These structures enforce spatially-periodic DNA organization in nanocrystalline immunocomplexes that trigger strong recognition by TLR9, which is conventionally known to bind single DNA ligands. We demonstrate that we can "knock in" this ability for TLR9 amplification in membrane-active AMP mutants, which suggests the existence of tradeoffs between membrane permeating activity and immunomodulatory activity in AMP sequences.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/inmunología , Péptidos Catiónicos Antimicrobianos/química , ADN/química , Receptor Toll-Like 9/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Simulación por Computador , ADN/inmunología , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/inmunología , Ligandos , Macrófagos/efectos de los fármacos , Modelos Moleculares , Conformación Proteica en Hélice alfa/fisiología , Dispersión de Radiación , Receptor Toll-Like 9/inmunología , Difracción de Rayos X , Catelicidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...