Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39057718

RESUMEN

Short-chain fatty acids (SCFAs) are the major microbial metabolites produced from the fermentation of dietary fiber in the gut. They are recognised as secretagogues of the glucagon-like peptides, GLP-1 and GLP-2, likely mediated by the activation of free fatty acid receptors 2 and 3 (FFAR2 and 3) expressed on enteroendocrine L-cells. Fiber-deficient diets are associated with decreased intestinal function and decreased colonic GLP-1 and GLP-2 content. Here, we speculated that the lowered colonic GLP-1 observed following a fiber-free diet was a consequence of decreased SCFA production and a subsequent decrease in FFAR2/3 activation. Furthermore, we explored the consequences of a fiber-free diet followed by intestinal injury, and we mechanistically explored the SCFA-FFAR2/3-GLP-1 pathway to explain the increased severity. Colonic luminal content from mice fed either a fiber-free or chow diet were analysed for SCFA content by LC-MS. FFAR2/3 receptor contributions to SCFA-mediated colonic GLP-1 secretion were assessed in isolated perfused preparations of the colon from FFAR2/3 double knockout (KO) and wild-type (WT) mice. Colitis was induced by the delivery of 3% dextran sulfate sodium (DSS) for 4 days in the drinking water of mice exposed to a fiber-free diet for 21 days. Colitis was induced by the delivery of 3% DSS for 7 days in FFAR2/3 KO mice. The removal of dietary fiber significantly decreased SCFA concentrations in the luminal contents of fiber-free fed mice compared to chow-fed mice. In the perfused colon, luminal SCFAs significantly increased colonic GLP-1 secretion in WT mice but not in FFAR2/3 KO mice. In the DSS-induced colitis model, the removal of dietary fiber increased the severity and prevented the recovery from intestinal injury. Additionally, colitis severity was similar in FFAR2/3 KO and WT mice after DSS application. In conclusion, the results confirm that the removal of dietary fiber is sufficient to decrease the colonic concentrations of SCFAs. Additionally, we show that a fiber-free diet predisposes the colon to increased intestinal injury, but this effect is independent of FFAR2 and FFAR3 signalling; therefore, it is unlikely that a fiber-free diet induces a decrease in luminal SCFAs and sensitivity to intestinal disease involves the SCFA-FFAR2/3-GLP-1 pathway.

2.
Front Endocrinol (Lausanne) ; 15: 1362711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586454

RESUMEN

Objective: Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods: Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results: Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions: Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.


Asunto(s)
Péptido 1 Similar al Glucagón , Intestino Delgado , Ratas , Ratones , Animales , Masculino , Femenino , Ratas Wistar , Ratones Endogámicos C57BL , Intestino Delgado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Dieta
3.
Br J Pharmacol ; 180(13): 1674-1689, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36683195

RESUMEN

BACKGROUND AND PURPOSE: Glucagon-like peptide-2 (GLP-2) is secreted postprandially by enteroendocrine L-cells and stimulates growth of the gut and bone. One GLP-2 analogue is approved for short bowel syndrome (SBS). To improve therapeutic efficacy, we developed biased GLP-2 receptor (GLP-2R) agonists through N-terminal modifications. EXPERIMENTAL APPROACH: Variants with Ala and Trp substitutions of the first seven positions of GLP-2(1-33) were studied in vitro for affinity, G protein activation (cAMP accumulation), recruitment of ß-arrestin 1 and 2, and internalization of the human and mouse GLP-2R. The intestinotrophic actions of the most efficacious (cAMP) biased variant were examined in mice. KEY RESULTS: Ala substitutions had more profound effects than Trp substitutions. For both, alterations at positions 1, 3 and 6 most severely impaired activity. ß-arrestin recruitment was more affected than cAMP accumulation. Among Ala substitutions, [H1A], [D3A] and [F6A] impaired potency (EC50 ) for cAMP-accumulation >20-fold and efficacy (Emax ) to 48%-87%, and were unable to recruit arrestins. The Trp substitutions, [A2W], [D3W] and [G4W] were partial agonists (Emax of 46%-59%) with 1.7-12-fold decreased potencies in cAMP and diminished ß-arrestin recruitment. The biased variants, [F6A], [F6W] and [S7W] induced less GLP-2R internalization compared with GLP-2, which induced internalization in a partly arrestin-independent manner. In mice, [S7W] enhanced gut trophic actions with increased weight of the small intestine, increased villus height and crypt depth compared with GLP-2. CONCLUSION AND IMPLICATIONS: G protein-biased GLP-2R agonists with diminished receptor desensitization have superior intestinotrophic effects and may represent improved treatment of intestinal insufficiency including SBS.


Asunto(s)
Arrestina , Péptido 2 Similar al Glucagón , Ratones , Humanos , Animales , Péptido 2 Similar al Glucagón/farmacología , Arrestina/metabolismo , Proteínas de Unión al GTP/metabolismo , beta-Arrestinas/metabolismo , Arrestinas , beta-Arrestina 1/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo
4.
iScience ; 25(11): 105296, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36325048

RESUMEN

The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism.

5.
Mol Metab ; 66: 101639, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400402

RESUMEN

OBJECTIVE: Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS: Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS: Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS: Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.


Asunto(s)
Glucagón , Receptores de Glucagón , Triglicéridos , Animales , Ratones , Acetaminofén/farmacología , Glucagón/metabolismo , Metabolismo de los Lípidos/fisiología , Ratones Endogámicos C57BL , Receptores de Glucagón/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
6.
Br J Pharmacol ; 179(18): 4486-4499, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35710141

RESUMEN

BACKGROUND AND PURPOSE: The incretin hormone, gastric inhibitory peptide/glucose-dependent insulinotropic polypeptide (GIP), secreted by the enteroendocrine K-cells in the proximal intestine, may regulate lipid metabolism and adiposity, but its exact role in these processes is unclear. EXPERIMENTAL APPROACH: We characterized in vitro and in vivo antagonistic properties of a novel GIP analogue, mGIPAnt-1. We further assessed the in vivo pharmacokinetic profile of this antagonist, as well as its ability to affect high-fat diet (HFD)-induced body weight gain in ovariectomised mice during an 8-week treatment period. KEY RESULTS: mGIPAnt-1 showed competitive antagonistic properties to the GIP receptor in vitro as it inhibited GIP-induced cAMP accumulation in COS-7 cells. Furthermore, mGIPAnt-1 was capable of inhibiting GIP-induced glucoregulatory and insulinotropic effects in vivo and has a favourable pharmacokinetic profile with a half-life of 7.2 h in C57Bl6 female mice. Finally, sub-chronic treatment with mGIPAnt-1 in ovariectomised HFD mice resulted in a reduction of body weight and fat mass. CONCLUSION AND IMPLICATIONS: mGIPAnt-1 successfully inhibited acute GIP-induced effects in vitro and in vivo and sub-chronically induces resistance to HFD-induced weight gain in ovariectomised mice. Our results support the development of GIP antagonists for the therapy of obesity.


Asunto(s)
Dieta Alta en Grasa , Receptores de la Hormona Gastrointestinal , Animales , Glucemia/metabolismo , Peso Corporal , Femenino , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Aumento de Peso
7.
Front Endocrinol (Lausanne) ; 13: 884501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600607

RESUMEN

Purpose: Decreased circulating levels of food-intake-regulating gut hormones have been observed in type 2 diabetes and obesity. However, it is still unknown if this is due to decreased secretion from the gut mucosal cells or due to extra-intestinal processing of hormones. Methods: We measured intestinal hormone content and assessed morphological differences in the intestinal mucosa by histology and immunohistochemistry. Secretion of hormones and absorption of glucose and bile acids (BA) were assessed in isolated perfused mouse intestine. Results: GIP (glucose-dependent insulinotropic polypeptide) and SS (somatostatin) contents were higher in the duodenum of control mice (p < 0.001, and <0.01). Duodenal GLP-1 (glucagon-like peptide-1) content (p < 0.01) and distal ileum PYY content were higher in DIO mice (p < 0.05). Villus height in the jejunum, crypt depth, and villus height in the ileum were increased in DIO mice (p < 0.05 and p = 0.001). In the distal ileum of DIO mice, more immunoreactive GLP-1 and PYY cells were observed (p = 0.01 and 0.007). There was no difference in the absorption of glucose and bile acids. Distal secretion of SS tended to be higher in DIO mice (p < 0.058), whereas no difference was observed for the other hormones in response to glucose or bile acids. Conclusion: Our data suggest that differences regarding production and secretion are unlikely to be responsible for the altered circulating gut hormone levels in obesity, since enteroendocrine morphology and hormone secretion capacity were largely unaffected in DIO mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hormonas Gastrointestinales , Animales , Ácidos y Sales Biliares , Dieta , Péptido 1 Similar al Glucagón , Glucosa , Mucosa Intestinal , Ratones , Ratones Obesos , Obesidad/etiología
8.
Br J Pharmacol ; 179(9): 1998-2015, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34855984

RESUMEN

BACKGROUND: Glucagon-like peptide-2 (GLP-2) is a pro-glucagon-derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP-2(1-33) is cleaved by DPP-4, forming GLP-2(3-33), having low intrinsic activity and competitive antagonism properties at GLP-2 receptors. We created radioligands based on these two molecules. EXPERIMENTAL APPROACH: The methionine in position 10 of GLP-2(1-33) and GLP-2(3-33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125 I]-hGLP-2(1-33,M10Y) and [125 I]-hGLP-2(3-33,M10Y). Both were characterized by competition binding, on-and-off-rate determination and receptor activation. Receptor expression was determined by target-tissue autoradiography and immunohistochemistry. KEY RESULTS: Both M10Y-substituted peptides induced cAMP production via the GLP-2 receptor comparable to the wildtype peptides. GLP-2(3-33,M10Y) maintained the antagonistic properties of GLP-2(3-33). However, hGLP-2(1-33,M10Y) had lower arrestin recruitment than hGLP-2(1-33). High affinities for the hGLP-2 receptor were observed using [125 I]-hGLP-2(1-33,M10Y) and [125 I]-hGLP-2(3-33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP-1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP-2 receptor specific antibody that in turn was confirmed in GLP-2 receptor knock-out mice. CONCLUSION AND IMPLICATIONS: Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP-2 receptor expression.


Asunto(s)
Receptor del Péptido 2 Similar al Glucagón , Péptidos , Animales , Unión Competitiva , Receptor del Péptido 2 Similar al Glucagón/agonistas , Receptor del Péptido 2 Similar al Glucagón/antagonistas & inhibidores , Humanos , Ratones , Fragmentos de Péptidos/metabolismo , Péptidos/farmacología
9.
J Endocr Soc ; 5(9): bvab084, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34337276

RESUMEN

CONTEXT: Inhibitors of the protease neprilysin (NEP) are used for treating heart failure, but are also linked to improvements in metabolism. NEP may cleave proglucagon-derived peptides, including the glucose and amino acid (AA)-regulating hormone glucagon. Studies investigating NEP inhibition on glucagon metabolism are warranted. OBJECTIVE: This work aims to investigate whether NEP inhibition increases glucagon levels. METHODS: Plasma concentrations of glucagon and AAs were measured in eight healthy men during a mixed meal with and without a single dose of the NEP inhibitor/angiotensin II type 1 receptor antagonist, sacubitril/valsartan (194 mg/206 mg). Long-term effects of sacubitril/valsartan (8 weeks) were investigated in individuals with obesity (n = 7). Mass spectrometry was used to investigate NEP-induced glucagon degradation, and the derived glucagon fragments were tested pharmacologically in cells transfected with the glucagon receptor (GCGR). Genetic deletion or pharmacological inhibition of NEP with or without concomitant GCGR antagonism was tested in mice to evaluate effects on AA metabolism. RESULTS: In healthy men, a single dose of sacubitril/valsartan significantly increased postprandial concentrations of glucagon by 228%, concomitantly lowering concentrations of AAs including glucagonotropic AAs. Eight-week sacubitril/valsartan treatment increased fasting glucagon concentrations in individuals with obesity. NEP cleaved glucagon into 5 inactive fragments (in vitro). Pharmacological NEP inhibition protected both exogenous and endogenous glucagon in mice after an AA challenge, while NEP-deficient mice showed elevated fasting and AA-stimulated plasma concentrations of glucagon and urea compared to controls. CONCLUSION: NEP cleaves glucagon, and inhibitors of NEP result in hyperglucagonemia and may increase postprandial AA catabolism without affecting glycemia.

10.
Front Endocrinol (Lausanne) ; 12: 695145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108943

RESUMEN

Treatment with exogenous GLP-2 has been shown to accelerate the growth of intestinal adenomas and adenocarcinomas in experimental models of colonic neoplasia, however, the role of endogenous GLP-2 in tumor promotion is less well known. Mice with a global deletion of the glucagon receptor (Gcgr-/-) display an increase in circulating GLP-1 and GLP-2. Due to the intestinotrophic nature of GLP-2, we hypothesized that Gcgr-/- mice would be more susceptible to colonic dysplasia in a model of inflammation-induced colonic carcinogenesis. Female Gcgr-/- mice were first characterized for GLP-2 secretion and in a subsequent study they were given a single injection with the carcinogen azoxymethane (7.5 mg/kg) and treated with dextran sodium sulfate (DSS) (3%) for six days (n=19 and 9). A cohort of animals (n=4) received a colonoscopy 12 days following DSS treatment and all animals were sacrificed after six weeks. Disruption of glucagon receptor signaling led to increased GLP-2 secretion (p<0.0001) and an increased concentration of GLP-2 in the pancreas of Gcgr-/- mice, coinciding with an increase in small intestinal (p<0.0001) and colonic (p<0.05) weight. Increased villus height was recorded in the duodenum (p<0.001) and crypt depth was increased in the duodenum and jejunum (p<0.05 and p<0.05). Disruption of glucagon receptor signaling did not affect body weight during AOM/DSS treatment, neither did it affect the inflammatory score assessed during colonoscopy or the number of large and small adenomas present at the end of the study period. In conclusion, despite the increased endogenous GLP-2 secretion Gcgr-/- mice were not more susceptible to AOM/DSS-induced tumors.


Asunto(s)
Carcinogénesis , Proliferación Celular , Mucosa Intestinal/patología , Receptores de Glucagón/genética , Adenoma/inducido químicamente , Adenoma/genética , Adenoma/patología , Animales , Azoximetano , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Femenino , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Biomedicines ; 9(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916501

RESUMEN

Accumulating evidence implicates glucagon-like peptide-1 (GLP-1) to have, beyond glucose maintenance, a beneficial role in the gastrointestinal tract. Here, we review emerging data investigating GLP-1 as a novel treatment for intestinal diseases, including inflammatory bowel diseases, short-bowel syndrome, intestinal toxicities and coeliac disease. Possible beneficial mechanisms for these diseases include GLP-1's influence on gastric emptying, its anti-inflammatory properties and its intestinotrophic effect. The current knowledge basis derives from the available GLP-1 agonist treatments in experimental animals and small clinical trials. However, new novel strategies including dual GLP-1/GLP-2 agonists are also in development for the treatment of intestinal diseases.

12.
Front Endocrinol (Lausanne) ; 12: 640602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716991

RESUMEN

Dietary fiber has been linked to improved gut health, yet the mechanisms behind this association remain poorly understood. One proposed mechanism is through its influence on the secretion of gut hormones, including glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2). We aimed to: 1) investigate the impact of a fiber deficient diet on the intestinal morphological homeostasis; 2) evaluate L-cell secretion; and 3) to ascertain the role of GLP-1, GLP-2 and Takeda G protein-receptor-5 (TGR5) signaling in the response using GLP-1 receptor, GLP-2 receptor and TGR5 knockout mice. Female C57BL/6JRj mice (n = 8) either received a standard chow diet or were switched to a crude fiber-deficient diet for a short (21 days) and long (112 days) study period. Subsequent identical experiments were performed in GLP-1 receptor, GLP-2 receptor and TGR5 knockout mice. The removal of fiber from the diet for 21 days resulted in a decrease in small intestinal weight (p < 0.01) and a corresponding decrease in intestinal crypt depth in the duodenum, jejunum and ileum (p < 0.001, p < 0.05, and p < 0.01, respectively). Additionally, colon weight was decreased (p < 0.01). These changes were associated with a decrease in extractable GLP-1, GLP-2 and PYY in the colon (p < 0.05, p < 0.01, and p < 0.01). However, we could not show that the fiber-dependent size decrease was dependent on GLP-1 receptor, GLP-2 receptor or TGR5 signaling. Intestinal permeability was increased following the removal of fiber for 112 days. In conclusion, our study highlights the importance of dietary fiber to maintain intestinal weight, colonic L-cell secretion and intestinal integrity.


Asunto(s)
Fibras de la Dieta , Péptido 1 Similar al Glucagón/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Intestinos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ácidos y Sales Biliares , Colon/metabolismo , Femenino , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 2 Similar al Glucagón/genética , Heterocigoto , Intestino Delgado/metabolismo , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Permeabilidad , Radioinmunoensayo , Transducción de Señal
13.
Biomedicines ; 9(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430185

RESUMEN

Intestinal adaptation is an important response and a natural repair mechanism in acute intestinal injury and is critical for recovery. Glucagon-like peptide 2 (GLP-2) has been demonstrated to enhance mucosal repair following intestinal damage. In this study, we aimed to investigate the role of GLP-2 receptor activation on intestinal protection and adaptation upon chemotherapy-induced intestinal injury. The injury was induced with a single injection of 5-fluorouracil in female GLP-2 receptor knockout (GLP-2R(-/-)) mice and their wild type (WT) littermates. The mice were euthanized in the acute or the recovery phase of the injury; the small intestines were analysed for weight changes, morphology, histology, inflammation, apoptosis and proliferation. In the acute phase, only inflammation was slightly increased in the GLP-2R(-/-) mice compared to WT. In the recovery phase, we observed the natural compensatory response with an increase in small intestinal weight, crypt depth and villus height in WT mice, and this was absent in the GLP-2R(-/-) mice. Both genotypes responded with hyperproliferation. From this, we concluded that GLP-2R signalling does not have a major impact on acute intestinal injury but is pivotal for the adaptive response in the small intestine.

14.
JCI Insight ; 6(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33434183

RESUMEN

Somatostatin (SS) inhibits glucagon-like peptide-1 (GLP-1) secretion in a paracrine manner. We hypothesized that blocking somatostatin subtype receptor 2 (SSTR2) and 5 (SSTR5) would improve glycemia by enhancing GLP-1 secretion. In the perfused mouse small intestine, the selective SSTR5 antagonist (SSTR5a) stimulated glucose-induced GLP-1 secretion to a larger degree than the SSTR2 antagonist (SSTR2a). In parallel, mice lacking the SSTR5R showed increased glucose-induced GLP-1 secretion. Both antagonists improved glycemia in vivo in a GLP-1 receptor-dependent (GLP-1R-dependent) manner, as the glycemic improvements were absent in mice with impaired GLP-1R signaling and in mice treated with a GLP-1R-specific antagonist. SSTR5a had no direct effect on insulin secretion in the perfused pancreas, whereas SSTR2a increased insulin secretion in a GLP-1R-independent manner. Adding a dipeptidyl peptidase 4 inhibitor (DPP-4i) in vivo resulted in additive effects on glycemia. However, when glucose was administered intraperitoneally, the antagonist was incapable of lowering blood glucose. Oral administration of SSTR5a, but not SSTR2a, lowered blood glucose in diet-induced obese mice. In summary, we demonstrate that selective SSTR antagonists can improve glucose control primarily through the intestinal GLP-1 system in mice.


Asunto(s)
Glucemia/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/farmacología , Receptores de Somatostatina/antagonistas & inhibidores , Animales , Glucemia/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Modelos Animales de Enfermedad , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Insulina , Secreción de Insulina/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Receptores de Somatostatina/genética
15.
Mol Metab ; 42: 101080, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32937194

RESUMEN

OBJECTIVE: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.


Asunto(s)
Aminoácidos/metabolismo , Hígado Graso/fisiopatología , Glucagón/metabolismo , Adulto , Animales , Glucemia/metabolismo , Hígado Graso/metabolismo , Femenino , Glucagón/fisiología , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas , Ratas Wistar , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Urea/metabolismo
16.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G980-G987, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32308039

RESUMEN

Glucagon-like peptide (GLP)-1 and -2-secreting L cells have been shown to express the bile acid receptor Takeda G protein-receptor-5 (TGR5) and increase secretion upon receptor activation. Previous studies have explored GLP-1 secretion following acute TGR5 activation, but chronic activation and GLP-2 responses have not been characterized. In this study, we aimed to investigate the consequences of pharmacological TGR5 receptor activation on L cell hormone production in vivo using the specific TGR5 agonist RO5527239 and the GLP-2 receptor knockout mouse. Here, we show that 1) TGR5 receptor activation led to increased GLP-1 and GLP-2 content in the colon, which 2) was associated with an increased small intestinal weight that 3) was GLP-2 dependent. Additionally, we report that TGR5-mediated gallbladder filling occurred independently of GLP-2 signaling. In conclusion, we demonstrate that pharmacological TGR5 receptor activation stimulates L cells, triggering GLP-2-dependent intestinal adaption in mice.NEW & NOTEWORTHY Using the specific Takeda G protein-receptor-5 (TGR5) agonist RO5527239 and GLP-2 receptor knockout mice, we show that activation of TGR5 led to the increase in colonic GLP-1 and GLP-2 concomitant with a GLP-2 dependent growth response in the proximal portion of the small intestine.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Enteroendocrinas/efectos de los fármacos , Péptido 2 Similar al Glucagón/metabolismo , Intestino Delgado/efectos de los fármacos , Ácidos Isonipecóticos/farmacología , Oximas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Colon/efectos de los fármacos , Colon/crecimiento & desarrollo , Colon/metabolismo , Células Enteroendocrinas/metabolismo , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 2 Similar al Glucagón/genética , Receptor del Péptido 2 Similar al Glucagón/metabolismo , Intestino Delgado/crecimiento & desarrollo , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
17.
J Endocr Soc ; 4(1): bvz034, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010874

RESUMEN

Glucagon-like peptide-1 (GLP-1) is protective in lung disease models but the underlying mechanisms remain elusive. Because the hormone atrial natriuretic peptide (ANP) also has beneficial effects in lung disease, we hypothesized that GLP-1 effects may be mediated by ANP expression. To study this putative link, we used a mouse model of chronic obstructive pulmonary disease (COPD) and assessed lung function by unrestrained whole-body plethysmography. In 1 study, we investigated the role of endogenous GLP-1 by genetic GLP-1 receptor (GLP-1R) knockout (KO) and pharmaceutical blockade of the GLP-1R with the antagonist exendin-9 to -39 (EX-9). In another study the effects of exogenous GLP-1 were assessed. Lastly, we investigated the bronchodilatory properties of ANP and a GLP-1R agonist on isolated bronchial sections from healthy and COPD mice. Lung function did not differ between mice receiving phosphate-buffered saline (PBS) and EX-9 or between GLP-1R KO mice and their wild-type littermates. The COPD mice receiving GLP-1R agonist improved pulmonary function (P < .01) with less inflammation, but no less emphysema compared to PBS-treated mice. Compared with the PBS-treated mice, treatment with GLP-1 agonist increased ANP (nppa) gene expression by 10-fold (P < .01) and decreased endothelin-1 (P < .01), a peptide associated with bronchoconstriction. ANP had moderate bronchodilatory effects in isolated bronchial sections and GLP-1R agonist also showed bronchodilatory properties but less than ANP. Responses to both peptides were significantly increased in COPD mice (P < .05, P < .01). Taken together, our study suggests a link between GLP-1 and ANP in COPD.

18.
Am J Primatol ; 81(8): e23033, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31368125

RESUMEN

Pied tamarins (Saguinus bicolor) are endangered New World primates, and in captivity appear to be very susceptible to stress. We measured cortisol in 214 saliva samples from 36 tamarins and in 227 fecal samples from 27 tamarins, and investigated the effects of age, sex, pregnancy, rearing history, social status, weight, group composition, and enclosure type using generalized linear mixed models. There was no effect of age on either fecal or salivary cortisol levels. Female pied tamarins in late pregnancy had higher fecal cortisol levels than those in early pregnancy, or nonpregnant females, but there was no effect of pregnancy on salivary cortisol. Females had higher salivary cortisol levels than males, but there was no effect of rearing history. However, for fecal cortisol, there was an interaction between sex and rearing history. Hand-reared tamarins overall had higher fecal cortisol levels, but while male parent-reared tamarins had higher levels than females who were parent-reared, the reverse was true for hand-reared individuals. There was a trend towards lower fecal cortisol levels in subordinate individuals, but no effect of status on salivary cortisol. Fecal but not salivary cortisol levels declined with increasing weight. We found little effect of group composition on cortisol levels in either saliva or feces, suggesting that as long as tamarins are housed socially, the nature of the group is of less importance. However, animals in off-show enclosures had higher salivary and fecal cortisol levels than individuals housed on-show. We suggest that large on-show enclosures with permanent access to off-exhibit areas may compensate for the effects of visitor disturbance, and a larger number of tamarins of the same species housed close together may explain the higher cortisol levels found in tamarins living in off-show accommodation, but further research is needed.


Asunto(s)
Hidrocortisona/análisis , Saguinus/fisiología , Estrés Psicológico , Factores de Edad , Bienestar del Animal , Animales , Animales de Zoológico/fisiología , Heces/química , Femenino , Vivienda para Animales , Masculino , Embarazo , Saliva/química , Factores Sexuales , Medio Social
19.
J Vis Exp ; (147)2019 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-31132057

RESUMEN

Intestinal adaptation is the natural compensatory mechanism that occurs when the bowel is lost due to trauma. The adaptive responses, such as crypt cell proliferation and increased nutrient absorption, are critical in recovery, yet poorly understood. Understanding the molecular mechanism behind the adaptive responses is crucial to facilitate the identification of nutrients or drugs to enhance adaptation. Different approaches and models have been described throughout the literature, but a detailed descriptive way to essentially perform the procedures is needed to obtain reproducible data. Here, we describe a method to estimate important endpoints and proliferative markers of small intestinal injury and compensatory hyperproliferation using a model of chemotherapy-induced mucositis in mice. We demonstrate the detection of proliferating cells using a cell cycle specific marker, as well as using small intestinal weight, crypt depth, and villus height as endpoints. Some of the critical steps within the described method are the removal and weighing of the small intestine and the rather complex software system suggested for the measurement of this technique. These methods have the advantages that they are not time-consuming, and that they are cost-effective and easy to carry out and measure.


Asunto(s)
Adaptación Fisiológica , Antineoplásicos/efectos adversos , Biomarcadores/metabolismo , Determinación de Punto Final , Intestino Delgado/lesiones , Mucositis/inducido químicamente , Mucositis/patología , Enfermedad Aguda , Animales , Peso Corporal , Bromodesoxiuridina/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/patología , Ratones Endogámicos C57BL
20.
Am J Physiol Endocrinol Metab ; 314(1): E93-E103, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978545

RESUMEN

Glucagon secreted from the pancreatic alpha-cells is essential for regulation of blood glucose levels. However, glucagon may play an equally important role in the regulation of amino acid metabolism by promoting ureagenesis. We hypothesized that disruption of glucagon receptor signaling would lead to an increased plasma concentration of amino acids, which in a feedback manner stimulates the secretion of glucagon, eventually associated with compensatory proliferation of the pancreatic alpha-cells. To address this, we performed plasma profiling of glucagon receptor knockout ( Gcgr-/-) mice and wild-type (WT) littermates using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, and tissue biopsies from the pancreas were analyzed for islet hormones and by histology. A principal component analysis of the plasma metabolome from Gcgr-/- and WT littermates indicated amino acids as the primary metabolic component distinguishing the two groups of mice. Apart from their hyperaminoacidemia, Gcgr-/- mice display hyperglucagonemia, increased pancreatic content of glucagon and somatostatin (but not insulin), and alpha-cell hyperplasia and hypertrophy compared with WT littermates. Incubating cultured α-TC1.9 cells with a mixture of amino acids (Vamin 1%) for 30 min and for up to 48 h led to increased glucagon concentrations (~6-fold) in the media and cell proliferation (~2-fold), respectively. In anesthetized mice, a glucagon receptor-specific antagonist (Novo Nordisk 25-2648, 100 mg/kg) reduced amino acid clearance. Our data support the notion that glucagon secretion and hepatic amino acid metabolism are linked in a close feedback loop, which operates independently of normal variations in glucose metabolism.


Asunto(s)
Aminoácidos/efectos adversos , Aminoácidos/sangre , Comunicación Celular , Células Secretoras de Glucagón/fisiología , Hepatocitos/fisiología , Receptores de Glucagón/genética , Animales , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Electrólitos/efectos adversos , Electrólitos/sangre , Femenino , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/patología , Glucosa/efectos adversos , Hepatocitos/efectos de los fármacos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Hígado/efectos de los fármacos , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Soluciones/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...