Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; : 271678X241258569, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806143

RESUMEN

This study measured the relationship between pial collateral (leptomeningeal anastomoses, LMA) flow, intraparenchymal cortical cerebral blood flow (cCBF) and brain tissue oxygenation (btO2) during acute ischemic stroke to investigate how pial flow translates to downstream cCBF and btO2 and examined how this relationship is altered in hypertension. Proximal transient middle cerebral artery occlusion (tMCAO) was performed in male Wistar (n = 8/group) and Spontaneously Hypertensive Rats (SHR, n = 8/group). A combination laser Doppler-oxygen probe was placed within the expected cortical peri-infarct in addition to a surface laser doppler probe which measured LMA flow. Phenylephrine (PE) was infused 30 minutes into tMCAO to increase blood pressure (BP) by 30% for 10 minutes and assessed CBF autoregulation. During the initial 30-minute period of tMCAO, btO2 and cCBF were lower in SHR compared to Wistar rats (btO2: 11.5 ± 10.5 vs 17.5 ± 10.8 mmHg and cCBF: -29.7 ± 23.3% vs -17.8 ± 41.9%); however, LMA flow was similar between groups. The relationship between LMA flow, cCBF and btO2 were interdependent in Wistar rats. However, this relationship was disrupted in SHR rats and partially restored by induced hypertension. This study provides evidence that cCBF and btO2 were diminished during tMCAO in chronic hypertension, and that induced hypertension was beneficial regardless of hypertensive status.

2.
Front Neurol ; 15: 1373445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585360

RESUMEN

Introduction: Stroke interventions that increase collateral flow have the potential to salvage penumbral tissue and increase the number of patients eligible for reperfusion therapy. We compared the efficacy of two different collateral therapeutics during transient middle cerebral artery occlusion (tMCAO) in normotensive and hypertensive rats. Methods: The change in collateral and core perfusion was measured using dual laser Doppler in response to either a pressor agent (phenylephrine, 10 mg/kg iv or vehicle) or a collateral vasodilator (TM5441, 5 mg/kg iv or vehicle) given 30 min into tMCAO in male Wistar and spontaneously hypertensive rats (SHRs). Results: Pressor therapy increased collateral flow in the Wistar rats but was ineffective in the SHRs. The increase in collateral flow in the Wistar rats was associated with impaired cerebral blood flow autoregulation (CBFAR) that was intact in the SHRs. TM5441 caused a decrease in collateral perfusion in the Wistar rats and a modest increase in the SHRs. The pressor therapy reduced early infarction in both groups but increased edema in the SHRs, whereas TM5441 did not have any beneficial effects in either group. Conclusions: Thus, the pressor therapy was superior to a collateral vasodilator in increasing collateral flow and improving outcomes in the Wistar rats, likely due to pial collaterals that were pressure passive; the lack of CBF response in the SHRs to pressor therapy was likely due to intact CBFAR that limited perfusion. While TM5441 modestly increased CBF in the SHRs but not in the Wistar rats, it did not have a beneficial effect on stroke outcomes. These results suggest that collateral therapies may need to be selected for certain comorbidities.

3.
Alzheimers Dement ; 20(2): 890-903, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817376

RESUMEN

INTRODUCTION: Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. METHODS: Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5 months old), mid (8 to 9 months old), or late adulthood (14 to 15 months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. RESULTS: Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. DISCUSSION: Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. HIGHLIGHTS: Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.


Asunto(s)
Disfunción Cognitiva , Hipertensión , Ratas , Masculino , Animales , Captopril/farmacología , Captopril/uso terapéutico , Angiotensina II/metabolismo , Angiotensina II/farmacología , Ratas Wistar , Hipertensión/complicaciones , Ratas Endogámicas SHR , Hipocampo/metabolismo , Disfunción Cognitiva/complicaciones , Presión Sanguínea
4.
Br J Haematol ; 204(2): 399-401, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985143

RESUMEN

The genetic underpinnings of beta-thalassaemia encompass a myriad of molecular mechanisms. The ability of synonymous mutations, an often-overlooked category of variants, to influence ß-globin expression and phenotypic disease is highlighted by this report by Gorivale et al. Commentary on: Gorivale et al. When a synonymous mutation breaks the silence in a thalassaemia patient. Br J Haematol 2024;204:677-682.


Asunto(s)
Talasemia , Talasemia beta , Humanos , Mutación Silenciosa , Mutación , Talasemia beta/genética , Globinas beta/genética , Globinas/genética
5.
Physiol Rep ; 11(16): e15789, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37604668

RESUMEN

Human stroke serum (HSS) has been shown to impair cerebrovascular function, likely by factors released into the circulation after ischemia. 20 nm gold nanoparticles (GNPs) have demonstrated anti-inflammatory properties, with evidence that they decrease pathologic markers of ischemic severity. Whether GNPs affect cerebrovascular function, and potentially protect against the damaging effects of HSS on the cerebral circulation remains unclear. HSS obtained 24 h poststroke was perfused through the lumen of isolated and pressurized third-order posterior cerebral arteries (PCAs) from male Wistar rats with and without GNPs (~2 × 109 GNP/ml), or GNPs in vehicle, in an arteriograph chamber (n = 8/group). All vessels were myogenically reactive ≥60 mmHg intravascular pressure; however, vessels containing GNPs had significantly less myogenic tone. GNPs increased vasoreactivity to small and intermediate conductance calcium activated potassium channel activation via NS309; however, reduced vasoconstriction to nitric oxide synthase inhibition. Hydraulic conductivity and transvascular filtration, were decreased by GNPs, suggesting a protective effect on the blood-brain barrier. The stress-strain curves of PCAs exposed to GNPs were shifted leftward, indicating increased vessel stiffness. This study provides the first evidence that GNPs affect the structure and function of the cerebrovasculature, which may be important for their development and use in biomedical applications.


Asunto(s)
Oro , Nanopartículas del Metal , Ratas , Humanos , Animales , Masculino , Ratas Wistar , Oro/farmacología , Angiografía , Barrera Hematoencefálica
6.
Carbohydr Polym ; 300: 120267, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372490

RESUMEN

Algae hold particular promise as a feedstock for biomaterials, as they are capable of producing a wide variety of polymers with the properties required for 3D printing. However, the use of algal polymers has been limited to alginate, agar, carrageenan, and ulvan extracted from seaweeds. Diverse algal taxa beyond seaweeds have yet to be explored. In this comprehensive review, we discuss available algal biomaterials, their properties, and emerging applications in 3D printing techniques. We also identify elite algal strains to be used in 3D printing and comment on both advantages and limitations of algal biomass as a printing material. Global 3D printing market trends and material demands are also critically analyzed. Finally, the future prospects, opportunities, and challenges for using algal polymers in 3D printing market for a sustainable economy are discussed. We hope this review will provide a foundation for exploring the 3D printable biomaterials from algae.


Asunto(s)
Polisacáridos , Impresión Tridimensional , Materiales Biocompatibles , Alginatos , Plantas , Polímeros
7.
N Engl J Med ; 387(8): 753-756, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36001717
8.
J Vis Exp ; (184)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35815999

RESUMEN

Identification and isolation of contagious individuals along with quarantine of close contacts, is critical for slowing the spread of COVID-19. Large-scale testing in a surveillance or screening capacity for asymptomatic carriers of COVID-19 provides both data on viral spread and the follow-up ability to rapidly test individuals during suspected outbreaks. The COVID-19 early detection program at Michigan State University has been utilizing large-scale testing in a surveillance or screening capacity since fall of 2020. The methods adapted here take advantage of the reliability, large sample volume, and self-collection benefits of saliva, paired with a cost-effective, reagent conserving two-dimensional pooling scheme. The process was designed to be adaptable to supply shortages, with many components of the kits and the assay easily substituted. The processes outlined for collecting and processing SARS-CoV-2 samples can be adapted to test for future viral pathogens reliably expressed in saliva. By providing this blueprint for universities or other organizations, preparedness plans for future viral outbreaks can be developed.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Reproducibilidad de los Resultados , Saliva , Manejo de Especímenes
9.
Blood Adv ; 6(18): 5364-5378, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35667091

RESUMEN

The effects of synonymous single nucleotide variants (sSNVs) are often neglected because they do not alter protein primary structure. Nevertheless, there is growing evidence that synonymous variations may affect messenger RNA (mRNA) expression and protein conformation and activity, which may lead to protein deficiency and disease manifestations. Because there are >21 million possible sSNVs affecting the human genome, it is not feasible to experimentally validate the effect of each sSNV. Here, we report a comprehensive series of in silico analyses assessing sSNV impact on a specific gene. ADAMTS13 was chosen as a model for its large size, many previously reported sSNVs, and associated coagulopathy thrombotic thrombocytopenic purpura. Using various prediction tools of biomolecular characteristics, we evaluated all ADAMTS13 sSNVs registered in the National Center for Biotechnology Information database of single nucleotide polymorphisms, including 357 neutral sSNVs and 19 sSNVs identified in patients with thrombotic thrombocytopenic purpura. We showed that some sSNVs change mRNA-folding energy/stability, disrupt mRNA splicing, disturb microRNA-binding sites, and alter synonymous codon or codon pair usage. Our findings highlight the importance of considering sSNVs when assessing the complex effects of ADAMTS13 alleles, and our approach provides a generalizable framework to characterize sSNV impact in other genes and diseases.


Asunto(s)
MicroARNs , Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13/genética , Codón , Humanos , Nucleótidos , Púrpura Trombocitopénica Trombótica/genética , ARN Mensajero/genética
10.
J Thromb Haemost ; 20(9): 2098-2108, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35753044

RESUMEN

BACKGROUND: Von Willebrand factor (VWF) is elevated in sickle cell disease (SCD) and contributes to vaso-occlusion through its thrombogenic properties. VWF is regulated by ADAMTS13, a plasma protease that cleaves VWF into less bioactive multimers. Independent investigations have shown VWF to be elevated in SCD, whereas measurements of ADAMTS13 have been variable. OBJECTIVES: We assessed ADAMTS13 activity using multiple activity assays and measured levels of alternative VWF-cleaving proteases in SCD. METHODS/ PATIENTS: Plasma samples were collected from adult patients with SCD (n = 20) at a single institution when presenting for routine red cell exchange transfusion therapy. ADAMTS13 activity was measured by FRETS-VWF73, Technozym ADAMTS-13 Activity ELISA kit and a full-length VWF digestion reaction. Alternative VWF-cleaving proteases were identified by ELISA. A cell culture model was used to study the impact of SCD stimuli on endothelial ADAMTS13 and alternative VWF-cleaving proteases. RESULTS: ADAMTS13 activity was found to be moderately deficient across the SCD cohort as assessed by activity assays using a VWF A2 domain peptide substrate. However, SCD plasma showed preserved ability to digest full-length VWF, suggesting assay-discrepant results. Neutrophil and endothelial-derived proteases were found to be elevated in SCD plasma. Matrix metalloproteinase 9 specifically showed preferential cleavage of full-length VWF. Upregulation of alternative VWF-cleaving proteases occurred in endothelial cells exposed to SCD stimuli such as heme and hypoxia. CONCLUSIONS: This is the first demonstration of accessory plasma enzymes contributing to the regulation of VWF in a specific disease state and may have implications for assessing the VWF/ADAMTS13 axis in other settings.


Asunto(s)
Anemia de Células Falciformes , Factor de von Willebrand , Proteínas ADAM , Proteína ADAMTS13 , Adulto , Células Endoteliales , Humanos , Factor de von Willebrand/química
11.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510986

RESUMEN

Central nervous system (CNS) infections are a major cause of human morbidity and mortality worldwide. Even patients that survive, CNS infections can have lasting neurological dysfunction resulting from immune and pathogen induced pathology. Developing approaches to noninvasively track pathology and immunity in the infected CNS is crucial for patient management and development of new therapeutics. Here, we develop novel MRI-based approaches to monitor virus-specific CD8+ T cells and their relationship to cerebrovascular pathology in the living brain. We studied a relevant murine model in which a neurotropic virus (vesicular stomatitis virus) was introduced intranasally and then entered the brain via olfactory sensory neurons - a route exploited by many pathogens in humans. Using T2*-weighted high-resolution MRI, we identified small cerebral microbleeds as an early form of pathology associated with viral entry into the brain. Mechanistically, these microbleeds occurred in the absence of peripheral immune cells and were associated with infection of vascular endothelial cells. We monitored the adaptive response to this infection by developing methods to iron label and track individual virus specific CD8+ T cells by MRI. Transferred antiviral T cells were detected in the brain within a day of infection and were able to reduce cerebral microbleeds. These data demonstrate the utility of MRI in detecting the earliest pathological events in the virally infected CNS as well as the therapeutic potential of antiviral T cells in mitigating this pathology.


Asunto(s)
Antivirales , Células Endoteliales , Animales , Encéfalo , Hemorragia Cerebral , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL
12.
Biotechnol Biofuels Bioprod ; 15(1): 8, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35418157

RESUMEN

BACKGROUND: Microalgae possess numerous advantages for use as a feedstock in producing renewable fuels and products, with techno-economic analysis (TEA) frequently used to highlight the economic potential and technical challenges of utilizing this biomass in a biorefinery context. However, many historical TEA studies have focused on the conversion of biomass with elevated levels of carbohydrates and lipids and lower levels of protein, incurring substantial burdens on the ability to achieve high cultivation productivity rates relative to nutrient-replete, high-protein biomass. Given a strong dependence of algal biomass production costs on cultivation productivity, further TEA assessment is needed to understand the economic potential for utilizing potentially lower-cost but lower-quality, high-protein microalgae for biorefinery conversion. RESULTS: In this work, we conduct rigorous TEA modeling to assess the economic viability of two conceptual technology pathways for processing proteinaceous algae into a suite of fuels and products. One approach, termed mild oxidative treatment and upgrading (MOTU), makes use of a series of thermo-catalytic operations to upgrade solubilized proteins and carbohydrates to hydrocarbon fuels, while another alternative focuses on the biological conversion of those substrates to oxygenated fuels in the form of mixed alcohols (MA). Both pathways rely on the production of polyurethanes from unsaturated fatty acids and valorization of unconverted solids for use as a material for synthesizing bioplastics. The assessment found similar, albeit slightly higher fuel yields and lower costs for the MA pathway, translating to a residual solids selling price of $899/ton for MA versus $1033/ton for MOTU as would be required to support a $2.50/gallon gasoline equivalent (GGE) fuel selling price. A variation of the MA pathway including subsequent upgrading of the mixed alcohols to hydrocarbon fuels (MAU) reflected a required solids selling price of $975/ton. CONCLUSION: The slight advantages observed for the MA pathway are partially attributed to a boundary that stops at oxygenated fuels versus fungible drop-in hydrocarbon fuels through a more complex MOTU configuration, with more comparable results obtained for the MAU scenario. In either case, it was shown that an integrated algal biorefinery can be economical through optimal strategies to utilize and valorize all fractions of the biomass.

13.
Blood Adv ; 6(13): 3932-3944, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413099

RESUMEN

Hemophilia B is a blood clotting disorder caused by deficient activity of coagulation factor IX (FIX). Multiple recombinant FIX proteins are currently approved to treat hemophilia B, and several gene therapy products are currently being developed. Codon optimization is a frequently used technique in the pharmaceutical industry to improve recombinant protein expression by recoding a coding sequence using multiple synonymous codon substitutions. The underlying assumption of this gene recoding is that synonymous substitutions do not alter protein characteristics because the primary sequence of the protein remains unchanged. However, a critical body of evidence shows that synonymous variants can affect cotranslational folding and protein function. Gene recoding could potentially alter the structure, function, and in vivo immunogenicity of recoded therapeutic proteins. Here, we evaluated multiple recoded variants of F9 designed to further explore the effects of codon usage bias on protein properties. The detailed evaluation of these constructs showed altered conformations, and assessment of translation kinetics by ribosome profiling revealed differences in local translation kinetics. Assessment of wild-type and recoded constructs using a major histocompatibility complex (MHC)-associated peptide proteomics assay showed distinct presentation of FIX-derived peptides bound to MHC class II molecules, suggesting that despite identical amino acid sequence, recoded proteins could exhibit different immunogenicity risks. Posttranslational modification analysis indicated that overexpression from gene recoding results in suboptimal posttranslational processing. Overall, our results highlight potential functional and immunogenicity concerns associated with gene-recoded F9 products. These findings have general applicability and implications for other gene-recoded recombinant proteins.


Asunto(s)
Hemofilia B , Codón , Factor IX/genética , Factor IX/metabolismo , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Proteínas Recombinantes/genética , Mutación Silenciosa
14.
Sci Rep ; 11(1): 22688, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811385

RESUMEN

Brain injuries induced by external forces are particularly challenging to model experimentally. In recent decades, the domestic pig has been gaining popularity as a highly relevant animal model to address the pathophysiological mechanisms and the biomechanics associated with head injuries. Understanding cognitive, motor, and sensory aspects of pig behavior throughout development is crucial for evaluating cognitive and motor deficits after injury. We have developed a comprehensive battery of tests to characterize the behavior and physiological function of the Yucatan minipig throughout maturation. Behavioral testing included assessments of learning and memory, executive functions, circadian rhythms, gait analysis, and level of motor activity. We applied traditional behavioral apparatus and analysis methods, as well as state-of-the-art sensor technologies to report on motion and activity, and artificial intelligent approaches to analyze behavior. We studied pigs from 16 weeks old through sexual maturity at 35 weeks old. The results show multidimensional characterization of minipig behavior, and how it develops and changes with age. This animal model may capitulate the biomechanical consideration and phenotype of head injuries in the developing brain and can drive forward the field of understanding pathophysiological mechanisms and developing new therapies to accelerate recovery in children who have suffered head trauma.


Asunto(s)
Conducta Animal/fisiología , Maduración Sexual/fisiología , Porcinos Enanos/crecimiento & desarrollo , Porcinos/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos/fisiología , Lesiones Encefálicas , Ritmo Circadiano/fisiología , Cognición/fisiología , Modelos Animales de Enfermedad , Femenino , Marcha/fisiología , Análisis de la Marcha/métodos , Masculino , Movimiento/fisiología , Prueba de Campo Abierto/fisiología
15.
Genome Med ; 13(1): 122, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321100

RESUMEN

BACKGROUND: Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. METHODS: We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. RESULTS: We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. CONCLUSIONS: Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.


Asunto(s)
Uso de Codones , Codón , Biología Computacional/métodos , Bases de Datos Genéticas , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores de Tumor , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Estimación de Kaplan-Meier , Neoplasias/mortalidad , Pronóstico , Transcriptoma
16.
Artículo en Inglés | MEDLINE | ID: mdl-33801836

RESUMEN

Coronavirus disease (COVID-19) and resulting restrictions have significantly impacted physical activity levels. However, objectively measured changes in physical activity levels among UK university students during lockdown are understudied. Using data collected via remote measurement technology from a mobile physical activity tracker, this study aimed to describe the longitudinal trajectories of physical activity following the start of lockdown among students at a large UK university, and to investigate whether these trajectories varied according to age, gender, and ethnicity. Continuous physical activity data for steps walked per week (n = 730) and miles run per week (n = 264) were analysed over the first period of lockdown and subsequent restriction easing using negative binomial mixed models for repeated measures. Throughout the observation period, more steps were walked by males compared to females, and by White groups compared to all other ethnic groups combined. However, there was a gradual increase in the number of steps walked per week following the commencement of lockdown, irrespective of sociodemographic characteristics. For females only, there was a decrease in the number of miles run per week following lockdown. The long-term impact of the pandemic on physical health is unknown, but our results highlight changes in physical activity which could have implications for physical health.


Asunto(s)
COVID-19 , Coronavirus , Control de Enfermedades Transmisibles , Ejercicio Físico , Femenino , Humanos , Masculino , SARS-CoV-2 , Estudiantes , Reino Unido , Universidades
17.
PLoS One ; 16(3): e0248141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667278

RESUMEN

Several marine species have developed a magnetic perception that is essential for navigation and detection of prey and predators. One of these species is the transparent glass catfish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine the behavior of the glass catfish in response to static magnetic fields which will provide valuable insight on function of this magnetic response. By utilizing state of the art animal tracking software and artificial intelligence approaches, we quantified the effects of magnetic fields on the swimming direction of glass catfish. The results demonstrate that glass catfish placed in a radial arm maze, consistently swim away from magnetic fields over 20 µT and show adaptability to changing magnetic field direction and location.


Asunto(s)
Bagres/fisiología , Campos Magnéticos , Conducta Predatoria/fisiología , Natación/fisiología , Animales
18.
PLoS Comput Biol ; 17(3): e1008805, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730015

RESUMEN

Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.


Asunto(s)
Coagulación Sanguínea , Proteínas Sanguíneas/genética , COVID-19/metabolismo , Proteína Inhibidora del Complemento C1/genética , Proteínas de Unión a Poli(A)/genética , SARS-CoV-2/metabolismo , Vitamina K Epóxido Reductasas/genética , Anticoagulantes/administración & dosificación , Proteínas Sanguíneas/metabolismo , COVID-19/fisiopatología , COVID-19/virología , Proteína Inhibidora del Complemento C1/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Modelos Moleculares , Mutación , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Proteínas Virales/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/administración & dosificación
19.
F1000Res ; 9: 174, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014344

RESUMEN

Ribosome profiling provides the opportunity to evaluate translation kinetics at codon level resolution. Here, we describe ribosome profiling data, generated from two HEK293T cell lines. The ribosome profiling data are composed of Ribo-seq (mRNA sequencing data from ribosome protected fragments) and RNA-seq data (total RNA sequencing). The two HEK293T cell lines each express a version of the F9 gene, both of which are translated into identical proteins in terms of their amino acid sequences. However, these F9 genes vary drastically in their codon usage and predicted mRNA structure. We also provide the pipeline that we used to analyze the data. Further analyzing this dataset holds great potential as it can be used i) to unveil insights into the composition and regulation of the transcriptome, ii) for comparison with other ribosome profiling datasets, iii) to measure the rate of protein synthesis across the proteome and identify differences in elongation rates, iv) to discover previously unidentified translation of peptides, v) to explore the effects of codon usage or codon context in translational kinetics and vi) to investigate cotranslational folding. Importantly, a unique feature of this dataset, compared to other available ribosome profiling data, is the presence of the F9 gene in two very distinct coding sequences.


Asunto(s)
Codón/genética , Factor IX/genética , Biosíntesis de Proteínas , Ribosomas/genética , Células HEK293 , Humanos
20.
Thromb Haemost ; 120(12): 1668-1679, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32838472

RESUMEN

Coronavirus disease of 2019 (COVID-19) is the clinical manifestation of the respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While primarily recognized as a respiratory disease, it is clear that COVID-19 is systemic illness impacting multiple organ systems. One defining clinical feature of COVID-19 has been the high incidence of thrombotic events. The underlying processes and risk factors for the occurrence of thrombotic events in COVID-19 remain inadequately understood. While severe bacterial, viral, or fungal infections are well recognized to activate the coagulation system, COVID-19-associated coagulopathy is likely to have unique mechanistic features. Inflammatory-driven processes are likely primary drivers of coagulopathy in COVID-19, but the exact mechanisms linking inflammation to dysregulated hemostasis and thrombosis are yet to be delineated. Cumulative findings of microvascular thrombosis has raised question if the endothelium and microvasculature should be a point of investigative focus. von Willebrand factor (VWF) and its protease, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13), play important role in the maintenance of microvascular hemostasis. In inflammatory conditions, imbalanced VWF-ADAMTS-13 characterized by elevated VWF levels and inhibited and/or reduced activity of ADAMTS-13 has been reported. Also, an imbalance between ADAMTS-13 activity and VWF antigen is associated with organ dysfunction and death in patients with systemic inflammation. A thorough understanding of VWF-ADAMTS-13 interactions during early and advanced phases of COVID-19 could help better define the pathophysiology, guide thromboprophylaxis and treatment, and improve clinical prognosis.


Asunto(s)
COVID-19/complicaciones , Coagulación Intravascular Diseminada/etiología , Microvasos/patología , SARS-CoV-2/fisiología , Trombosis/etiología , Proteína ADAMTS13/metabolismo , Animales , Coagulación Sanguínea/inmunología , Humanos , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...