Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Haematol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295138

RESUMEN

Covalent Bruton's tyrosine kinase-inhibitors (cBTK-i) are highly active in MYD88-mutated (MYD88Mut) Waldenstrom's macroglobulinaemia and suppress nuclear factor kappa-light-chain-enhancer of activated B cells and extracellular signal-regulated kinases-1/2 (ERK1/2)-related signalling. BTKCys481 mutations are associated with cBTK-i acquired resistance and are accompanied by reactivation of ERK1/2 that promotes inflammatory cytokine secretion and paracrine-mediated resistance of BTK wild-type (BTKWT) tumour cells. Pirtobrutinib is a non-covalent BTK-inhibitor that binds at non-BTKCys481 sites. We show that pirtobrutinib blocked p-ERK1/2, ERK1/2-driven inflammatory cytokines, and overcame paracrine-mediated resistance in MYD88Mut lymphoma cells expressing mutated BTKCys481. Our results provide important mechanistic insights for the activity of pirtobrutinib in MYD88Mut lymphomas carrying BTKCys481 mutations.

2.
Semin Hematol ; 60(2): 90-96, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37099028

RESUMEN

Apart from the MYD88L265P mutation, extensive information exists on the molecular mechanisms in Waldenström's Macroglobulinemia and its potential utility in the diagnosis and treatment tailoring. However, no consensus recommendations are yet available. Consensus Panel 3 (CP3) of the 11th International Workshop on Waldenström's Macroglobulinemia (IWWM-11) was tasked with reviewing the current molecular necessities and best way to access the minimum data required for a correct diagnosis and monitoring. Key recommendations from IWWM-11 CP3 included: (1) molecular studies are warranted for patients in whom therapy is going to be started; such studies should also be done in those whose bone marrow (BM) material is sampled based on clinical issues; (2) molecular studies considered essential for these situations are those that clarify the status of 6q and 17p chromosomes, and MYD88, CXCR4, and TP53 genes. These tests in other situations, and/or other tests, are considered optional; (3) independently of the use of more sensitive and/or specific techniques, the minimum requirements are allele specific polymerase chain reaction for MYD88L265P and CXCR4S338X using whole BM, and fluorescence in situ hybridization for 6q and 17p and sequencing for CXCR4 and TP53 using CD19+ enriched BM; (4) these requirements refer to all patients; therefore, sample should be sent to specialized centers.


Asunto(s)
Macroglobulinemia de Waldenström , Humanos , Macroglobulinemia de Waldenström/diagnóstico , Macroglobulinemia de Waldenström/genética , Macroglobulinemia de Waldenström/terapia , Factor 88 de Diferenciación Mieloide/genética , Hibridación Fluorescente in Situ , Mutación
3.
Leukemia ; 30(5): 1116-25, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26867669

RESUMEN

Waldenström's macroglobulinemia (WM) is a B-cell non-Hodgkin's lymphoma (B-NHL) characterized by immunoglobulin M (IgM) monoclonal gammopathy and the medullary expansion of clonal lymphoplasmacytic cells. Neoplastic transformation has been partially attributed to hyperactive MYD88 signaling, secondary to the MYD88 L265P mutation, occurring in the majority of WM patients. Nevertheless, the presence of chronic active B-cell receptor (BCR) signaling, a feature of multiple IgM+ B-NHL, remains a subject of speculation in WM. Here, we interrogated the BCR signaling capacity of primary WM cells by utilizing multiparametric phosphoflow cytometry and found heightened basal phosphorylation of BCR-related signaling proteins, and augmented phosphoresponses on surface IgM (sIgM) crosslinking, compared with normal B cells. In support of those findings we observed high sIgM expression and loss of phosphatase activity in WM cells, which could both lead to signaling potentiation in clonal cells. Finally, led by the high-signaling heterogeneity among WM samples, we generated patient-specific phosphosignatures, which subclassified patients into a 'high' and a 'healthy-like' signaling group, with the second corresponding to patients with a more indolent clinical phenotype. These findings support the presence of chronic active BCR signaling in WM while providing a link between differential BCR signaling utilization and distinct clinical WM subgroups.


Asunto(s)
Linfocitos B/patología , Receptores de Antígenos de Linfocitos B/fisiología , Transducción de Señal , Macroglobulinemia de Waldenström/patología , Células Clonales/patología , Femenino , Humanos , Inmunoglobulina M/metabolismo , Masculino , Fosforilación
4.
Blood Cancer J ; 6: e380, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26771806

RESUMEN

Deregulated microRNA (miR)/transcription factor (TF)-based networks represent a hallmark of cancer. We report here a novel c-Myc/miR-23b/Sp1 feed-forward loop with a critical role in multiple myeloma (MM) and Waldenstrom's macroglobulinemia (WM) cell growth and survival. We have found miR-23b to be downregulated in MM and WM cells especially in the presence of components of the tumor bone marrow milieu. Promoter methylation is one mechanism of miR-23b suppression in myeloma. In gain-of-function studies using miR-23b mimics-transfected or in miR-23b-stably expressing MM and WM cell lines, we observed a significant decrease in cell proliferation and survival, along with induction of caspase-3/7 activity over time, thus supporting a tumor suppressor role for miR-23b. At the molecular level, miR-23b targeted Sp1 3'UTR and significantly reduced Sp1-driven nuclear factor-κB activity. Finally, c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, transcriptionally repressed miR-23b. Thus MYC-dependent miR-23b repression in myeloma cells may promote activation of oncogenic Sp1-mediated signaling, representing the first feed-forward loop with critical growth and survival role in myeloma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Mieloma Múltiple/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factor de Transcripción Sp1/genética , Animales , Secuencia de Bases , Sitios de Unión , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Metilación de ADN , Modelos Animales de Enfermedad , Regulación hacia Abajo , Expresión Génica , Perfilación de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Humanos , MicroARNs/química , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Mensajero/química , ARN Mensajero/genética , Factor de Transcripción Sp1/química , Factor de Transcripción Sp1/metabolismo
5.
Leukemia ; 29(1): 169-76, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24912431

RESUMEN

CXCR4(WHIM) somatic mutations are common Waldenstrom's Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCR(S338X) mutation in WM. Following SDF-1a stimulation, CXCR4(S338X) WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4(S338X)-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4(S338X) WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4(WT) cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4(S338X) WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4(WHIM) versus CXCR4(WT) WM patients, and remained active despite ibrutinib therapy in CXCR4(WHIM) patients. Last, CXCR4(S338X) WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4(WHIM) mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Receptores CXCR4/genética , Macroglobulinemia de Waldenström/tratamiento farmacológico , Adenina/análogos & derivados , Activación Enzimática , Humanos , Piperidinas , Macroglobulinemia de Waldenström/genética
6.
Leukemia ; 28(8): 1698-704, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24509637

RESUMEN

MYD88 L265P is highly prevalent in Waldenstrom's Macroglobulinemia (WM) and IgM monoclonal gammopathy of unknown significance (MGUS). We investigated whether MYD88 L265P could be identified by peripheral blood (PB) allele-specific PCR. MYD88 L265P was detected in untreated WM (114/118; 96.6%); previously treated WM (63/102; 61.8%); and IgM MGUS (5/12; 41.7%) but in none of 3 hyper-IgM or 40 healthy individuals. Median PB MYD88 L265P ΔCt was 3.77, 7.24, 10.89, 12.33 and 14.07 for untreated WM, previously treated WM, IgM MGUS, hyper-IgM and healthy individuals, respectively (P<0.0001). For the 232 IgM MGUS and WM patients, PB MYD88 L265P ΔCt moderately correlated to bone marrow (BM) disease (r=-0.3553; P<0.0001), serum IgM (r=-0.3262; P<0.0001) and hemoglobin (r=0.3005; P<0.0001) levels. PB MYD88 L265P ΔCt and serum IgM correlated similarly with BM disease burden. For positive patients, PB MYD88 L265P ΔCt was <6.5 in 100/114 (88%) untreated WM, and >6.5 in 4/5 (80%) IgM MGUS patients (P=0.0034). Attainment of a negative PB MYD88 L265P mutation status was associated with lower BM disease (P=0.001), serum IgM (P=0.019) and higher hemoglobin (P=0.004) levels in treated patients. These studies show the feasibility for detecting MYD88 L265P by PB examination, and the potential for PB MYD88 L265P ΔCt use in the diagnosis and management of WM patients.


Asunto(s)
Inmunoglobulina M/sangre , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Mutación , Factor 88 de Diferenciación Mieloide/genética , Macroglobulinemia de Waldenström/genética , Antígenos CD19/análisis , Hemoglobinas/análisis , Humanos , Gammopatía Monoclonal de Relevancia Indeterminada/sangre , Factor 88 de Diferenciación Mieloide/sangre , Macroglobulinemia de Waldenström/sangre
7.
J Anim Physiol Anim Nutr (Berl) ; 98(5): 908-13, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24372960

RESUMEN

The purpose of this study was to determine the diurnal composition and concentration of volatile fatty acids (VFA) and to determine VFA composition and concentration differences between stomach compartment 1 (C1) and caecum of alpacas fed grass and alfalfa hay. The study was divided into two experiments. In Experiment 1 (EXP 1), 10 male alpacas (3+ years old, 65 kg BW) were divided into two groups, housed in drylot pens, provided ad libitum water and fed alfalfa (AH) or grass hay (GH) for 30 days. The alpacas were slaughtered and the digestive tract collected, divided into sub-tract sections, weighed and digesta sampled for pH, dry matter (DM) and NDF. Volatile fatty acid composition and concentration were determined on C1 and caecal material. Four adult male (3+ years old, 60 kg BW), C1 fistulated alpacas were housed in metabolism crates and divided into two forage groups for Experiment 2 (EXP 2). Alpacas were fed the forages as in EXP 1. Diurnal C1 VFA samples were drawn at 1, 3, 6, 9, 12, 18 and 24 h post-feeding. There were no differences between forages for tract weight, C1 and caecum digesta DM or NDF. Differences were noted (p < 0.05) for pH between forages and sub-tract site. Volatile fatty acids concentrations were different (p < 0.05) for forage and site, and total VFA was higher for AH than GH (110.6 and 79.1 mm) and C1 than caecum (40.7 and 27.6 mm). Proportion of VFA was significant (p < 0.05) for forage and site, C1 acetate highest for GH (84.8 vs. 74.0 mm) and caecum acetate 83.7 and 76.2 mm for GH and AH respectively. These data demonstrate the level of VFA produced in C1 and the caecum of alpacas and the diurnal VFA patterns. Composition of VFA is similar to other ruminant species.


Asunto(s)
Alimentación Animal/análisis , Camélidos del Nuevo Mundo/fisiología , Dieta/veterinaria , Ácidos Grasos Volátiles/química , Medicago sativa/química , Poaceae/química , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Masculino
8.
Ann Oncol ; 17(3): 488-94, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16357024

RESUMEN

BACKGROUND: Familial clustering of B-cell disorders among Waldenström's macroglobulinemia (WM) patients has been reported, though the frequency and any differences in disease manifestation for familial patients remain to be defined. PATIENTS AND METHODS: We therefore analyzed clinicopathological data from 257 consecutive and unrelated WM patients. Forty-eight (18.7%) patients had at least one first-degree relative with either WM (n = 13, 5.1%), or another B-cell disorder including non-Hodgkin's lymphoma (n = 9, 3.5%), myeloma (n = 8, 3.1%), chronic lymphocytic leukemia (n = 7, 2.7%), monoclonal gammopathy of unknown significance (n = 5, 1.9%), acute lymphocytic leukemia (n = 3, 1.2%) and Hodgkin's disease (n = 3, 1.2%). Patients with a familial history of WM or a plasma cell disorder (PCD) were diagnosed at a younger age and with greater bone marrow involvement. RESULTS: Deletions in 6q represented the only recurrent structural chromosomal abnormality and were found in 13% of patients, all non-familial cases. Interphase FISH analysis demonstrated deletions in 6q21-22.1 in nearly half of patients, irrespective of familial background. CONCLUSIONS: The above results suggest a high degree of clustering for B-cell disorders among first-degree relatives of patients with WM, along with distinct clinical features at presentation based on familial disease cluster patterns. Genomic studies to delineate genetic predisposition to WM are underway.


Asunto(s)
Macroglobulinemia de Waldenström/diagnóstico , Humanos , Hibridación Fluorescente in Situ , Incidencia , Interfase , Cariotipificación , Macroglobulinemia de Waldenström/genética , Macroglobulinemia de Waldenström/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...