Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 14(9): 4523-4536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39417197

RESUMEN

KRAS mutations occur in ~40-50% of mCRC and are associated with aggressive disease that is refractory to anti-EGFR therapies. Pancreatic cancer harbors ~90% KRAS driver gene mutation frequency. Small molecules targeting KRAS G12C gained FDA approval for KRAS G12C-mutated NSCLC. ONC212, a fluorinated imipridone with nM anti-cancer activity has preclinical efficacy against pancreatic cancer and other malignancies. MRTX1133, identified as a noncovalent selective KRAS G12D inhibitor that suppresses G12D signaling by binding to the switch II pocket thereby inhibiting protein-protein interactions. We investigated cell viability, drug synergies, pERK suppression and cytokine, chemokine or growth factor alterations following treatment with 5-Fluorouracil (5-FU) or ONC212 plus MRTX1133 in 6 human CRC and 4 human pancreatic cancer cell lines. IC50 sensitivities ranged from 7 to 12 µM for 5-FU, 0.2-0.8 µM for ONC212, and > 100 nM to > 5,000 nM for MRTX1133 (G12D N = 4: LS513 > 100, HPAF-II > 1,000, SNUC2B > 5,000, PANC-1 > 5,000). For non-G12D, the range of IC50 for MRTX1133 was > 1,000 to > 5,000 nM for CRC lines with G12V, G13D, or WT KRAS (N = 7). Synergies between MRTX1133 plus 5-FU or ONC212 were observed regardless of KRAS G12D mutation with combination indices of < 0.5 indicating strong synergy. Observed synergies were greater with MRTX1133 plus ONC212 compared to MRTX1133 plus 5-FU. pERK was suppressed with mutant but not wild-type KRAS at nM MRTX1133 doses. Immunostimulatory profiles included reduction in IL8/CXCL8, MICA, Angiopoietin 2, VEGF and TNF-alpha and increase in IL-18/IL-1F4 with MRTX treatments and combinations. Our studies reveal preclinical activity of MRTX1133 alone or synergies when combined with 5-FU or ONC212 against mCRC and pancreatic cancer cells regardless of KRAS G12D mutation. The results suggest that KRAS G12V and KRAS G13D should be further considered in clinical trials including combination therapies involving MRTX1133 and 5-FU or ONC212.

2.
Curr Oncol ; 30(11): 9611-9626, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37999116

RESUMEN

Pancreatic cancer is a devastating disease with a poor prognosis. Novel chemotherapeutics in pancreatic cancer have shown limited success, illustrating the urgent need for new treatments. Lurbinectedin (PM01183; LY-01017) received FDA approval in 2020 for metastatic small cell lung cancer on or after platinum-based chemotherapy and is currently undergoing clinical trials in a variety of tumor types. Lurbinectedin stalls and degrades RNA Polymerase II and introduces breaks in DNA, causing subsequent apoptosis. We now demonstrate lurbinectedin's highly efficient killing of human-derived pancreatic tumor cell lines PANC-1, BxPC-3, and HPAF-II as a single agent. We further demonstrate that a combination of lurbinectedin and irinotecan, a topoisomerase I inhibitor with FDA approval for advanced pancreatic cancer, results in the synergistic killing of pancreatic tumor cells. Western blot analysis of combination therapy indicates an upregulation of γH2AX, a DNA damage marker, and the Chk1/ATR pathway, which is involved in replicative stress and DNA damage response. We further demonstrate that the triple combination between lurbinectedin, irinotecan, and 5-fluorouracil (5-FU) results in a highly efficient killing of tumor cells. Our results are developing insights regarding molecular mechanisms underlying the therapeutic efficacy of a novel combination drug treatment for pancreatic cancer.


Asunto(s)
Fluorouracilo , Neoplasias Pancreáticas , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Carbolinas/farmacología , Carbolinas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
3.
Am J Cancer Res ; 13(7): 2938-2947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559982

RESUMEN

Integrin receptors have long posed as a potentially attractive target for disrupting cancer hallmarks. Promising preliminary findings with integrin inhibition as an adjuvant to chemotherapy have not translated to clinical success. However, the effect of integrin inhibition on tumor-immune cell interactions remains largely unexplored. Further investigation could shed light on a connection between integrin signaling and immune checkpoint expression, opening the path for using integrin inhibitors to sensitize otherwise resistant tumors to immunotherapy. Fluorescently labeled wild-type HCT-116 colorectal cancer cells and TALL-104 T-cells were co-cultured and treated with GLPG-0187, a small molecule integrin inhibitor, at various doses. This assay revealed dose dependent cancer cell killing, indicating that integrin inhibition may be sensitizing cancer cells to immune cells. The hypothesized mechanism involves TGF-ß-mediated PD-L1 upregulation in cancer cells. To investigate this mechanism, both WT and p53-/- HCT-116 cells were pre-treated with GLPG-0187 and subsequently with latent-TGF-ß. Western blot analysis demonstrated that the addition of latent-TGF-ß increased the expression of PD-L1 in cancer cells. Additionally, a low dose of integrin inhibitor rescued these effects, returning PD-L1 expression back to control levels. This indicates that the immunostimulatory effects of integrin inhibition may be due to downregulation of immune checkpoint PD-L1 on cancer cells. It must be noted that the higher dose of the drug did not reduce PD-L1 expression. This could potentially be due to off-target effects conflicting with the proposed pathway; however, these findings are still under active investigation. Ongoing proteomic experiments will include a larger range of both drug and latent-TGF-ß doses. Probing for additional downstream markers of TGF-ß and up-stream markers of PD-L1 will help to further elucidate this mechanism. Further co-culture experiments will also include anti-PD-L1 and anti-PD-1 therapy to investigate the viability of integrin inhibition as an adjuvant to immune checkpoint blockade.

4.
Am J Cancer Res ; 13(7): 2878-2885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559992

RESUMEN

Colorectal cancer is the third leading cause of cancer-related death and the third most common cause of cancer. As the five-year survival with advanced metastatic colorectal cancer (mCRC) is 14%, new treatment strategies are needed. Immune checkpoint blockade, which takes advantage of an individual's immune system to fight cancer, has an impact in the clinic; however, for CRC, it is only effective and approved for treating mismatch repair (MMR)-deficient cancer. Moreover, long-term outcomes in MMR-deficient mCRC suggest that most patients are not cured and eventually develop therapy resistance. We hypothesized that targeting TGF-ß signaling may enhance immune-mediated T-cell killing by MMR-deficient CRC cells. Using GLPG-0187, an inhibitor of multiple integrin receptors and TGF-ß, we demonstrate minimal cytotoxicity against MMR-deficient HCT116 or p53null HCT116 human CRC cells. GLPG-0187 promoted significant immune cell killing of the CRC cells by TALL-104 T lymphoblast cells and reduced phosphoSMAD2 in HCT116 p53-null cells either in the absence or presence of exogenous TGF-ß. We observed a reduction in CCL20, CXCL5, prolactin, and TRAIL-R3, while GDF-15 was increased in TALL-104 cells treated with a T-cell activating dose of GLPG-0187 (4 µM). Our results suggest that TGF-ß signaling inhibition by a general integrin receptor inhibitor may boost T-cell killing of MMR-deficient colorectal cancer cells and suggest that a combination of anti-GDF-15 in combination with TGF-ß blockade be further investigated in the treatment of MMR-deficient mCRC. Our results support the development of a novel immune-based therapeutic strategy to treat colorectal cancer by targeting the TGF-ß signaling pathway through integrin receptor blockade.

5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446056

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFß signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.


Asunto(s)
Neoplasias Colorrectales , Glucógeno Sintasa Quinasa 3 , Humanos , Animales , Ratones , Glucógeno Sintasa Quinasa 3/metabolismo , Granzimas/genética , Granzimas/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias Colorrectales/metabolismo , Linfocitos Infiltrantes de Tumor , Biopsia , Línea Celular Tumoral , Antígeno B7-H1
6.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798357

RESUMEN

Inhibition of GSK-3 using small-molecule elraglusib has shown promising preclinical antitumor activity. Using in vitro systems, we found that elraglusib promotes immune cell-mediated tumor cell killing, enhances tumor cell pyroptosis, decreases tumor cell NF-κB-regulated survival protein expression, and increases immune cell effector molecule secretion. Using in vivo systems, we observed synergy between elraglusib and anti-PD-L1 in an immunocompetent murine model of colorectal cancer. Murine responders had more tumor-infiltrating T-cells, fewer tumor-infiltrating Tregs, lower tumorigenic circulating cytokine concentrations, and higher immunostimulatory circulating cytokine concentrations. To determine the clinical significance, we utilized human plasma samples from patients treated with elraglusib and correlated cytokine profiles with survival. Using paired tumor biopsies, we found that CD45+ tumor-infiltrating immune cells had lower expression of inhibitory immune checkpoints and higher expression of T-cell activation markers in post-elraglusib patient biopsies. These results introduce several immunomodulatory mechanisms of GSK-3 inhibition using elraglusib, providing a rationale for the clinical evaluation of elraglusib in combination with immunotherapy. Statement of significance: Pharmacologic inhibition of GSK-3 using elraglusib sensitizes tumor cells, activates immune cells for increased anti-tumor immunity, and synergizes with anti-PD-L1 immune checkpoint blockade. These results introduce novel biomarkers for correlations with response to therapy which could provide significant clinical utility and suggest that elraglusib, and other GSK-3 inhibitors, should be evaluated in combination with immune checkpoint blockade.

7.
Am J Cancer Res ; 13(1): 307-325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777502

RESUMEN

A major underlying cause of the resistance of solid tumor cells to cancer therapy is the evasion of cell death following anti-cancer drug treatment. We explored the combination of TRAIL-inducing compound ONC201/TIC10 and Bcl-xL/Bcl-2 inhibitor ABT-263 to target the extrinsic and intrinsic apoptotic pathways, respectively, in solid tumor cell lines (N = 13) derived from different tissues (colon, prostate, lung, breast, ovary, bladder). We found an IC50 range of 0.83-20.10 µM for ONC201 and 0.06-14.75 µM for ABT-263 among the 13 cancer cell lines. We show that combination of ONC201 and ABT-263 produces a strong synergistic effect leading to tumor cell death, and that the combination is not toxic to human fibroblast cells. In OVCAR-3 ovarian cancer cells, 2.5 µM ONC201 and 1.25 µM ABT-263 yielded 37% and 27% inhibition of viability, respectively, while the combination of the two agents yielded 92% inhibition of viability, resulting in a high synergy score of 52; conversely, the same combination in the HFF-1 human fibroblast cells yielded 2.45% inhibition of viability and a synergy score of 6.92 (synergy scores were calculated using SynergyFinder; scores greater than 10 are considered synergistic). We also found that the combination of these two agents resulted in synergistic caspase activation and PARP cleavage consistent with induction of apoptosis. Combination therapy-induced cell death correlated with decreased levels of Mcl-1, BAG3, pAkt, and upregulation of Noxa along with Bax cleavage during apoptosis at 48 hours, and ATF4, TRAIL, and DR5 induction at 24 hours. There was some heterogeneity in the cell lines with regard to these responses. Our data provide evidence for synergy from the combination of ONC201 and ABT-263 against human solid tumor cell lines associated with alterations in cell death and pro-survival mediators. The combination of ONC201 and ABT-263 merits further exploration in vivo and in clinical trials against a variety of solid malignancies.

8.
Biochem Soc Trans ; 51(1): 57-70, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36629496

RESUMEN

The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.


Asunto(s)
Apoptosis , Receptores de Muerte Celular , Humanos
9.
Nat Commun ; 14(1): 273, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650158

RESUMEN

Senescence causes age-related diseases and stress-related injury. Paradoxically, it is also essential for organismal development. Whether senescence contributes to lung development or injury in early life remains unclear. Here, we show that lung senescence occurred at birth and decreased throughout the saccular stage in mice. Reducing senescent cells at this stage disrupted lung development. In mice (<12 h old) exposed to hyperoxia during the saccular stage followed by air recovery until adulthood, lung senescence increased particularly in type II cells and secondary crest myofibroblasts. This peaked during the alveolar stage and was mediated by the p53/p21 pathway. Decreasing senescent cells during the alveolar stage attenuated hyperoxia-induced alveolar and vascular simplification. Conclusively, early programmed senescence orchestrates postnatal lung development whereas later hyperoxia-induced senescence causes lung injury through different mechanisms. This defines the ontogeny of lung senescence and provides an optimal therapeutic window for mitigating neonatal hyperoxic lung injury by inhibiting senescence.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Animales , Ratones , Hiperoxia/metabolismo , Alveolos Pulmonares/metabolismo , Animales Recién Nacidos , Lesión Pulmonar/metabolismo , Pulmón/metabolismo
10.
Respir Res ; 23(1): 340, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496404

RESUMEN

BACKGROUND: Premature infants, subjected to supplemental oxygen and mechanical ventilation, may develop bronchopulmonary dysplasia, a chronic lung disease characterized by alveolar dysplasia and impaired vascularization. We and others have shown that hyperoxia causes senescence in cultured lung epithelial cells and fibroblasts. Although miR-34a modulates senescence, it is unclear whether it contributes to hyperoxia-induced senescence. We hypothesized that hyperoxia increases miR-34a levels, leading to cellular senescence. METHODS: We exposed mouse lung epithelial (MLE-12) cells and primary human small airway epithelial cells to hyperoxia (95% O2/5% CO2) or air (21% O2/5% CO2) for 24 h. Newborn mice (< 12 h old) were exposed to hyperoxia (> 95% O2) for 3 days and allowed to recover in room air until postnatal day 7. Lung samples from premature human infants requiring mechanical ventilation and control subjects who were not mechanically ventilated were employed. RESULTS: Hyperoxia caused senescence as indicated by loss of nuclear lamin B1, increased p21 gene expression, and senescence-associated secretory phenotype factors. Expression of miR-34a-5p was increased in epithelial cells and newborn mice exposed to hyperoxia, and in premature infants requiring mechanical ventilation. Transfection with a miR-34a-5p inhibitor reduced hyperoxia-induced senescence in MLE-12 cells. Additionally, hyperoxia increased protein levels of the oncogene and tumor-suppressor Krüppel-like factor 4 (KLF4), which were inhibited by a miR-34a-5p inhibitor. Furthermore, KLF4 knockdown by siRNA transfection reduced hyperoxia-induced senescence. CONCLUSION: Hyperoxia increases miR-34a-5p, leading to senescence in lung epithelial cells. This is dictated in part by upregulation of KLF4 signaling. Therefore, inhibiting hyperoxia-induced senescence via miR-34a-5p or KLF4 suppression may provide a novel therapeutic strategy to mitigate the detrimental consequences of hyperoxia in the neonatal lung.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Factor 4 Similar a Kruppel , MicroARNs , Animales , Humanos , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/tratamiento farmacológico , Dióxido de Carbono , Senescencia Celular , Células Epiteliales/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo
11.
Dev Dyn ; 251(12): 1934-1951, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35996230

RESUMEN

BACKGROUND: The cadherin-associated protein p120 catenin regulates convergent extension through interactions with cadherin proteins, Cdc42, and Rac1, as we previously showed in zebrafish (Danio rerio). Phosphorylation of p120 catenin changes the nature of its activity in vitro but is virtually unexplored in embryos. We used our previously developed antisense RNA splice-site morpholino targeted to endogenous p120 catenin-δ1 to cause defects in axis elongation probing the functions of three p120 catenin tyrosine-phosphorylation sites in gastrulating zebrafish embryos. RESULTS: The morpholino-induced defects were rescued by co-injections with mouse p120 catenin-δ1-3A mRNAs mutated at residues Y228 and Y217 to a non-phosphorylatable phenylalanine (F) or mutated at residue Y335 to a phosphomimetic glutamic acid (E). Co-injection of the complementary mutations Y228E, Y217E, or Y335F mRNAs partially rescued embryos whereas dual mutation to Y228E-Y217E blocked rescue. Immunopurification showed Y228F mutant proteins preferentially interacted with Rac1, potentially promoting cell migration. In contrast, the phosphomimetic Y228E preferentially interacted with E-cadherin increasing adhesion. Both Y228F and Y335F strongly bind VAV2. CONCLUSIONS: p120 catenin serves dual roles during gastrulation of zebrafish. Phosphorylation and dephosphorylation of tyrosine residues Y217, Y228, and Y335 precisely balance cell adhesion and cell migration to facilitate somite compaction and axis elongation.


Asunto(s)
Gastrulación , Pez Cebra , Ratones , Animales , Pez Cebra/metabolismo , Fosforilación , Morfolinos/metabolismo , Cateninas/genética , Cateninas/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular/fisiología , Tirosina/genética , Tirosina/metabolismo , Fosfoproteínas/metabolismo , beta Catenina/metabolismo
12.
Cancer Biol Ther ; 23(1): 417-423, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35815408

RESUMEN

GSK-3ß is a serine/threonine kinase implicated in tumorigenesis and chemotherapy resistance. GSK-3ß blockade downregulates the NF-κB pathway, modulates immune cell PD-1 and tumor cell PD-L1 expression, and increases CD8 + T cell and NK cell function. We report a case of adult T-cell leukemia/lymphoma (ATLL) treated with 9-ING-41, a selective GSK-3ß inhibitor in clinical development, who achieved a durable response. A 43-year-old male developed diffuse lymphadenopathy, and biopsy of axillary lymph node showed acute-type ATLL. Peripheral blood flow cytometry revealed a circulating clonal T cell population, and CSF was positive for ATLL involvement. After disease progression on the 3rd line of treatment, he started treatment with 9-ING-41 monotherapy in a clinical trial (NCT03678883). CT imaging after seven months showed a partial response. Sustained reduction of peripheral blood ATLL cells lasted 15 months. Treatment of patient-derived CD8 + T cells with 9-ING-41 increased the secretion of IFN-γ, granzyme B, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In conclusion, treatment of a patient with refractory ATLL with the GSK-3ß inhibitor 9-ING-41 resulted in a prolonged response. Ongoing experiments are investigating the hypothesis that 9-ING-41-induced T cell activation and immunomodulation contributes to its clinical activity. Further clinical investigation of 9-ING-41 for treatment of ATLL is warranted.


Asunto(s)
Leucemia-Linfoma de Células T del Adulto , Linfoma , Adulto , Apoptosis , Glucógeno Sintasa Quinasa 3 beta , Humanos , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Masculino , FN-kappa B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
13.
Pharmaceuticals (Basel) ; 15(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631444

RESUMEN

As COVID-19 continues to pose major risk for vulnerable populations, including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins, either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate transforming growth factor beta (TGF-ß) signaling, we compared the plasma levels of active and total TGF-ß in COVID-19+ patients. The plasma TGF-ß1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-ß1 levels correlated with activated TGF-ß1 levels. Moreover, the inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity through decreased TGF-ß1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.

14.
Cancers (Basel) ; 14(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35205776

RESUMEN

Though early-stage colorectal cancer has a high 5 year survival rate of 65-92% depending on the specific stage, this probability drops to 13% after the cancer metastasizes. Frontline treatments for colorectal cancer such as chemotherapy and radiation often produce dose-limiting toxicities in patients and acquired resistance in cancer cells. Additional targeted treatments are needed to improve patient outcomes and quality of life. Immunotherapy involves treatment with peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer cells. Preclinical and clinical investigations of immunotherapy for treatment of colorectal cancer including immune checkpoint blockade, adoptive cell therapy, monoclonal antibodies, oncolytic viruses, anti-cancer vaccines, and immune system modulators have been promising, but demonstrate limitations for patients with proficient mismatch repair enzymes. In this review, we discuss preclinical and clinical studies investigating immunotherapy for treatment of colorectal cancer and predictive biomarkers for response to these treatments. We also consider open questions including optimal combination treatments to maximize efficacy, minimize toxicity, and prevent acquired resistance and approaches to sensitize mismatch repair-proficient patients to immunotherapy.

15.
Am J Cancer Res ; 12(1): 138-151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141009

RESUMEN

Tumor cells upregulate myriad proteins that are important for pH regulation, resulting in the acidification of the extracellular tumor microenvironment (TME). Abnormal pH is known to dampen immune function, resulting in a worsened anti-tumor immune response. Understanding how extrinsic alterations in pH modulate the interactions between immune cells and tumors cells will help elucidate opportunities for new therapeutic approaches. We observed that pH impacts the function of immune cells, both natural killer (NK) and T cells, which is relevant in the context of a highly acidic TME. Decreased NK and T cell activity was correlated with decreasing pH in a co-culture immune cell-mediated tumor cell-killing assay. The addition of pH-modulating drugs cariporide, lansoprazole, and acetazolamide to the co-culture assay was able to partially mitigate this dampened immune cell function. Treatment of colorectal cancer (CRC) cells with NHE1 inhibitor cariporide increased CRC cell-secreted cytokines involved in immune cell recruitment and activation and decreased cytokines involved in epithelial-mesenchymal transition (EMT). Cariporide treatment also decreased CRC cell shed TRAIL-R2, TRAIL-R3, and PD-L1 which is relevant in the context of immunotherapy. These experiments can help inform future investigations into how the pH of the tumor microenvironment may be extrinsically modulated to improve anti-tumor immune response in solid tumors such as colorectal cancer.

16.
medRxiv ; 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35018385

RESUMEN

As COVID-19 continues to pose major risk for vulnerable populations including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced inhibition of pseudovirus infection by GLPG-0187. Because integrins activate TGF-ß signaling, we compared plasma levels of active and total TGF-ß in COVID-19+ patients. Plasma TGF-ß1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-ß1 levels correlated with activated TGF-ß1 levels. In our preclinical studies, Omicron infects lower airway lung cells less efficiently than other COVID-19 variants. Moreover, inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and may mitigate COVID-19 severity through decreased TGF-ß1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.

17.
Sci Rep ; 11(1): 20006, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625577

RESUMEN

Due to redundancy with other tyrosine phosphatases, the ubiquitously expressed tyrosine phosphatase SHP-2 (encoded by Ptpn11) is not required for T cell development. However, Ptpn11 gene deletion driven by CD4 Cre recombinase leads to cartilage tumors in the wrist. Using a fate mapping system, we demonstrate that wrist tumor development correlates with increased frequency and numbers of non-hematopoietic lineage negative CD45 negative cells with a bone chondrocyte stromal cell precursor cell (BCSP) phenotype. Importantly, the BCSP subset has a history of CD4 expression and a marked wrist location tropism, explaining why the wrist is the main site of tumor development. Mechanistically, we found that in SHP-2 absence, SOX-9 is no longer regulated, leading to an uncontrolled proliferation of the BCSP subset. Altogether, these results identify a unique subset of chondrocyte precursors tightly regulated by SHP-2. These findings underscore the need for the development of methods to therapeutically target this subset of cells, which could potentially have an impact on treatment of SHP-2 dysfunction linked debilitating diseases.


Asunto(s)
Neoplasias Óseas , Condrocitos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Muñeca/patología , Animales , Neoplasias Óseas/etiología , Neoplasias Óseas/patología , Antígenos CD4/metabolismo , Cartílago/patología , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Humanos , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Linfocitos T/metabolismo
18.
Oncotarget ; 12(20): 1980-1991, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34611474

RESUMEN

Inflammatory cytokines, chemokines, and growth factors are molecular messengers that circulate and have the capability to modify the tumor microenvironment and impact therapeutic response. The characterization of soluble mediators as biomarkers for diagnosis and prognosis is of interest in oncology. We utilize the cytokinome to characterize the response of colorectal tumor cell lines to selected small-molecules in oncology as a proof-of-concept dataset with immunomodulatory analyte heat map rankings for drug and cell line combinations. We observed overall trends in drug class effects with MEK-, BRAF-, PARP-inhibitors, and Imipridones in cytokine, chemokine, and growth factor responses that may help guide therapy selection. MEK-inhibitor treatment downregulated analytes VEGF, CXCL9/MIG, and IL-8/CXCL8 and upregulated CXCL14/BRAK, Prolactin, and CCL5/RANTES. BRAF-inhibitor treatment downregulated VEGF and IL-8/CXCL8, while increasing soluble TRAIL-R2. Treatment with PARP-inhibitors decreased CXCL9/MIG, IL-8/CXCL8, CCL3/MIP-1 alpha, VEGF, and CXCL14/BRAK, while treatment increased soluble TRAIL-R2 and prolactin. Treatment with Imipridones decreased CCL3/MIP-1 alpha, VEGF, CXCL14/BRAK, IL-8/CXCL8, and Prolactin and increased CXCL5/ENA-78. We also observed differential responses to therapeutics depending on the mutational profile of the cell line. In the future, a similar but larger dataset may be utilized in the clinic to aid in the prediction of patient response to immunomodulatory therapies based on tumor genotype.

19.
Oncotarget ; 12(21): 2131-2146, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676046

RESUMEN

Immunotherapy is an established treatment modality in oncology. However, in addition to primary or acquired therapy resistance with immune checkpoint blockade (ICB), hyperprogressive disease (HPD) or hyperprogression (HP) with acceleration of tumor growth occurs in a subset of patients receiving ICB therapy. A validated and predictive animal model would help investigate HPD/HP to develop new approaches for this challenging clinical entity. Using human cytotoxic T-cell line TALL-104 injected intraperitoneally into immunodeficient NCRU-nude athymic mice bearing mismatch repair-deficient (MMR-d) human colon carcinoma HCT116 p53-null (but not wild-type p53) tumor xenograft, we observed accelerated tumor growth after PD-1 blockade with pembrolizumab administration. There was increased colon tumor cell proliferation as determined by immunohistochemical Ki67 staining of tumor sections. There was no increase in MDM2 or MDM4/MDMX in the p53-null HCT116 cells versus the wild-type p53-expressing isogenic tumor cells, suggesting the effects in this model may be MDM2 or MDM4/MDMX-independent. Human cytokine profiling revealed changes in IFN-γ, TRAIL-R2/TNFRSF10B, TRANCE/TNFSF11/RANK L, CCL2/JE/MCP-1, Chitinase 3-like 1, IL-4 and TNF-α. This represents a novel humanized HPD mouse model with a link to deficiency of the p53 pathway of tumor suppression in the setting of MMR-d. Our novel humanized preclinical TALL-104/p53-null HCT116 mouse model implicates p53-deficiency in an MMR-d tumor as a possible contributor to HPD/HP and may help with evaluating therapeutic strategies in cancer immunotherapy to extend clinical benefits of ICB's in a broader patient population.

20.
Elife ; 102021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33443016

RESUMEN

Although the range of immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is variable, cytokine storm is observed in a subset of symptomatic individuals. To further understand the disease pathogenesis and, consequently, to develop an additional tool for clinicians to evaluate patients for presumptive intervention, we sought to compare plasma cytokine levels between a range of donor and patient samples grouped by a COVID-19 Severity Score (CSS) based on the need for hospitalization and oxygen requirement. Here we utilize a mutual information algorithm that classifies the information gain for CSS prediction provided by cytokine expression levels and clinical variables. Using this methodology, we found that a small number of clinical and cytokine expression variables are predictive of presenting COVID-19 disease severity, raising questions about the mechanism by which COVID-19 creates severe illness. The variables that were the most predictive of CSS included clinical variables such as age and abnormal chest x-ray as well as cytokines such as macrophage colony-stimulating factor, interferon-inducible protein 10, and interleukin-1 receptor antagonist. Our results suggest that SARS-CoV-2 infection causes a plethora of changes in cytokine profiles and that particularly in severely ill patients, these changes are consistent with the presence of macrophage activation syndrome and could furthermore be used as a biomarker to predict disease severity.


Asunto(s)
Algoritmos , COVID-19/diagnóstico , COVID-19/inmunología , Citocinas/sangre , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Quimiocina CXCL10/sangre , Humanos , Proteína Antagonista del Receptor de Interleucina 1/sangre , Interleucina-18/sangre , Pulmón/diagnóstico por imagen , Factor Estimulante de Colonias de Macrófagos/sangre , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...