Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37905106

RESUMEN

Parkinson's (PD) is a multi-factorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal based cognitive function are common, appear early and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of AMPA-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2 G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs to favor incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D 1 R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD. SIGNIFICANCE STATEMENT: Mutations in LRRK2 are common genetic risks for PD. Lrrk2 G2019S mice fail to exhibit long-term potentiation at corticostriatal synapses and show significant deficits in frontal-striatal based cognitive tasks. While LRRK2 has been implicated generally in protein trafficking, whether G2019S derails AMPAR trafficking at synapses on striatal neurons (SPNs) is unknown. We show that surface GluA1-AMPARs fail to internalize and instead accumulate excessively within and outside synapses. This effect is selective to D 1 R SPNs and negatively impacts synapse strengthening as GluA1-AMPARs fail to increase at the surface in response to potentiation and show limited surface mobility. Thus, LRRK2-G2019S narrows the effective range of plasticity mechanisms, supporting the idea that cognitive symptoms reflect an imbalance in AMPAR trafficking mechanisms within cell-type specific projections.

2.
iScience ; 26(10): 108002, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37854688

RESUMEN

Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.

3.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662400

RESUMEN

Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.

4.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993639

RESUMEN

Rational decision making is grounded in learning to associate actions with outcomes, a process that depends on projections from prefrontal cortex to dorsomedial striatum. Symptoms associated with a variety of human pathological conditions ranging from schizophrenia and autism to Huntington's and Parkinson's disease point toward functional deficits in this projection, but its development is not well understood, making it difficult to investigate how perturbations in development of this circuitry could contribute to pathophysiology. We applied a novel strategy based on Hotspot Analysis to assess the developmental progression of anatomical positioning of prefrontal cortex to striatal projections. Corticostriatal axonal territories established at P7 expand in concert with striatal growth but remain largely unchanged in positioning through adulthood, indicating they are generated by directed, targeted growth and not modified extensively by postnatal experience. Consistent with these findings, corticostriatal synaptogenesis increased steadily from P7 to P56, with no evidence for widescale pruning. As corticostriatal synapse density increased over late postnatal ages, the strength of evoked PFC input onto dorsomedial striatal projection neurons also increased, but spontaneous glutamatergic synaptic activity was stable. Based on its pattern of expression, we asked whether the adhesion protein, Cdh8, influenced this progression. In mice lacking Cdh8 in PFC corticostriatal projection neurons, axon terminal fields in dorsal striatum shifted ventrally. Corticostriatal synaptogenesis was unimpeded, but spontaneous EPSC frequency declined and mice failed to learn to associate an action with an outcome. Collectively these findings show that corticostriatal axons grow to their target zone and are restrained from an early age, do not undergo postnatal synapse pruning as the most dominant models predict, and that a relatively modest shift in terminal arbor positioning and synapse function has an outsized, negative impact on corticostriatal-dependent behavior.

5.
Neuroscientist ; 29(1): 97-116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-33966533

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder that has been recognized for over 200 years by its clinically dominant motor system impairment. There are prominent non-motor symptoms as well, and among these, psychiatric symptoms of depression and anxiety and cognitive impairment are common and can appear earlier than motor symptoms. Although the neurobiology underlying these particular PD-associated non-motor symptoms is not completely understood, the identification of PARK genes that contribute to hereditary and sporadic PD has enabled genetic models in animals that, in turn, have fostered ever deepening analyses of cells, synapses, circuits, and behaviors relevant to non-motor psychiatric and cognitive symptoms of human PD. Moreover, while it has long been recognized that inflammation is a prominent component of PD, recent studies demonstrate that brain-immune signaling crosstalk has significant modulatory effects on brain cell and synaptic function in the context of psychiatric symptoms. This review provides a focused update on such progress in understanding the neurobiology of PD-related non-motor psychiatric and cognitive symptoms.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/genética , Disfunción Cognitiva/etiología , Encéfalo , Ansiedad , Transducción de Señal
6.
Exp Neurol ; 355: 114145, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732218

RESUMEN

Impaired executive function is a common and debilitating non-motor symptom of idiopathic and hereditary Parkinson's disease (PD), but there is little understanding of the underlying pathophysiological mechanisms and circuits. The G2019S mutation in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) greatly increases risk for late-onset PD, and non-manifesting LRRK2G2019S carriers can also exhibit early and significant cognitive impairment. Here, we subjected young adult male mice carrying a Lrrk2G2019S knockin mutation to touchscreen-based operant tasks that measure attention, goal-directed learning and cognitive flexibility, all of which rely on frontal-striatal connectivity and are strongly modulated by cholinergic innervation. In a visuospatial attention task, mutant mice exhibited significantly more omissions and longer response latencies than controls that could not be attributed to deficits in motivation, visual sensory perception per se or locomotion, thereby suggesting impairments in divided attention and/or action-selection as well as generally slower information processing speed. Pretreating mice with the acetylcholinesterase inhibitor donepezil normalized both higher omission rates and longer response latencies in the mutants, but did not affect any performance metric in controls. Strikingly, cholinergic fiber density in cortical areas PL/IL and DMS (dorsomedial striatum) was significantly sparser in mutants than in controls, while further behavioral interrogation of the mutants revealed significant impairments in action-outcome associations but preserved cognitive flexibility. These data suggest that the Lrrk2G2019S mutation negatively impacts cholinergic innervation anatomically and functionally by young adulthood, impairing corticostriatal network function in ways that may contribute to early PD-associated executive function deficits.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Acetilcolinesterasa/genética , Animales , Colinérgicos , Cognición , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Ratones , Mutación/genética , Enfermedad de Parkinson/genética
7.
Cell Rep ; 37(3): 109836, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686347

RESUMEN

Clinical evidence suggests that rapid and sustained antidepressant action can be attained with a single exposure to psychedelics. However, the biological substrates and key mediators of psychedelics' enduring action remain unknown. Here, we show that a single administration of the psychedelic DOI produces fast-acting effects on frontal cortex dendritic spine structure and acceleration of fear extinction via the 5-HT2A receptor. Additionally, a single dose of DOI leads to changes in chromatin organization, particularly at enhancer regions of genes involved in synaptic assembly that stretch for days after the psychedelic exposure. These DOI-induced alterations in the neuronal epigenome overlap with genetic loci associated with schizophrenia, depression, and attention deficit hyperactivity disorder. Together, these data support that epigenomic-driven changes in synaptic plasticity sustain psychedelics' long-lasting antidepressant action but also warn about potential substrate overlap with genetic risks for certain psychiatric conditions.


Asunto(s)
Anfetaminas/farmacología , Espinas Dendríticas/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Epigenoma/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Alucinógenos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Sinapsis/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Espinas Dendríticas/metabolismo , Epigenómica , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Lóbulo Frontal/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
8.
Brain Commun ; 2(2): fcaa100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005890

RESUMEN

Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.

9.
J Neurophysiol ; 123(6): 2382-2389, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374202

RESUMEN

Parkinson's disease (PD) risk is increased by stress and certain gene mutations, including the most prevalent PD-linked mutation LRRK2-G2019S. Both PD and stress increase risk for psychiatric symptoms, yet it is unclear how PD-risk genes alter neural circuitry in response to stress that may promote psychopathology. Here we show significant differences between adult G2019S knockin and wild-type (wt) mice in stress-induced behaviors, with an unexpected uncoupling of depression-like and hedonia-like responses in G2019S mice. Moreover, mutant spiny projection neurons in nucleus accumbens (NAc) lack an adaptive, stress-induced change in excitability displayed by wt neurons, and instead show stress-induced changes in synaptic properties that wt neurons lack. Some synaptic alterations in NAc are already evident early in postnatal life. Thus G2019S alters the magnitude and direction of behavioral responses to stress that may reflect unique modifications of adaptive plasticity in cells and circuits implicated in psychopathology in humans.NEW & NOTEWORTHY Depression is associated with Parkinson's disease (PD), and environmental stress is a risk factor for both. We investigated how LRRK2-G2019S PD mutation affects depression-like behaviors, synaptic function, and intrinsic neuronal excitability following stress. In response to stress, the mutation drives abnormal synaptic changes, prevents adaptive changes in intrinsic excitability, and leads to aberrant behaviors, thus defining new ways in which PD mutations derail adaptive plasticity in response to stress that may contribute to disease onset.


Asunto(s)
Conducta Animal , Depresión , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Núcleo Accumbens , Enfermedad de Parkinson , Estrés Psicológico , Animales , Conducta Animal/fisiología , Depresión/etiología , Depresión/genética , Depresión/fisiopatología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/fisiopatología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología
10.
Nat Neurosci ; 23(5): 638-650, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284606

RESUMEN

Heightened aggression is characteristic of multiple neuropsychiatric disorders and can have various negative effects on patients, their families and the public. Recent studies in humans and animals have implicated brain reward circuits in aggression and suggest that, in subsets of aggressive individuals, domination of subordinate social targets is reinforcing. In this study, we showed that, in male mice, orexin neurons in the lateral hypothalamus activated a small population of glutamic acid decarboxylase 2 (GAD2)-expressing neurons in the lateral habenula (LHb) via orexin receptor 2 (OxR2) and that activation of these GAD2 neurons promoted male-male aggression and conditioned place preference for aggression-paired contexts. Moreover, LHb GAD2 neurons were inhibitory within the LHb and dampened the activity of the LHb as a whole. These results suggest that the orexin system is important for the regulation of inter-male aggressive behavior and provide the first functional evidence of a local inhibitory circuit within the LHb.


Asunto(s)
Agresión/fisiología , Neuronas GABAérgicas/metabolismo , Habénula/metabolismo , Orexinas/metabolismo , Animales , Masculino , Ratones , Transducción de Señal/fisiología
11.
Front Neurosci ; 14: 265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32273839

RESUMEN

Late-onset Parkinson's disease (PD) is dominated clinically and experimentally by a focus on dopamine neuron degeneration and ensuing motor system abnormalities. There are, additionally, a number of non-motor symptoms - including cognitive and psychiatric - that can appear much earlier in the course of the disease and also significantly impair quality of life. The neurobiology of such cognitive and psychiatric non-motor symptoms is poorly understood. The recognition of genetic forms of late-onset PD, which are clinically similar to idiopathic forms in both motor and non-motor symptoms, raises the perspective that brain cells and circuits - and the behaviors they support - differ in significant ways from normal by virtue of the fact that these mutations are carried throughout life, including especially early developmental critical periods where circuit structure and function is particularly susceptible to the influence of experience-dependent activity. In this focused review, we support this central thesis by highlighting studies of LRRK2-G2019S mouse models. We describe work that shows that in G2019S mutants, corticostriatal activity and plasticity are abnormal by P21, the end of a period of excitatory synaptogenesis in striatum. Moreover, by young adulthood, impaired striatal synaptic and non-synaptic forms of plasticity likely underlie altered and variable performance by mutant mice in validated tasks that test for depression-like and anhedonia-like behaviors. Mechanistically, deficits in cellular, synaptic and behavioral plasticity may be unified by mutation-linked defects in trafficking of AMPAR subunits and other membrane channels, which in turn may reflect impairment in the function of the Rab family of GTPases, a major target of LRRK2 phosphorylation. These findings underscore the need to better understand how PD-related mutant proteins influence brain structure and function during an extended period of brain development, and offer new clues for future therapeutic strategies to target non-motor cognitive or psychiatric symptoms of PD.

12.
J Comp Neurol ; 527(9): 1527-1540, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30680728

RESUMEN

The cardinal motor symptoms that define Parkinson's disease (PD) clinically have been recognized for over 200 years. That these symptoms arise following the loss of dopamine neurons in the substantia nigra has been known for the last 50. These long-established facts have fueled a broadly held expectation that degenerating dopaminergic neurons alone hold the key to understanding and curing PD. This prevalent expectation is at odds with the observation that many nonmotor symptoms, including depression and cognitive inflexibility among others, can appear years earlier than the overt dopaminergic neuron degeneration that drives motor abnormalities and are not improved by levodopa treatment. Thus, preserving or rescuing dopamine neuron health and function is of paramount importance, but this alone fails to capture the underlying neurobiology of earlier-appearing nonmotor symptoms. Insight into the complete landscape of disease-related abnormalities and the context in which they arise can be gleaned from a more comprehensive consideration of the PARK genes that are known to cause PD. Here, we make the case that a full incorporation of research showing when and where PARK genes are expressed as well as the impact of gene mutation on function throughout life, in tandem with research studying how dopaminergic neuron degeneration begins, is essential for a full understanding of the multi-dimensional etiology of PD. A broad view may also reveal something about long-term adjustments cells and systems make in response to gene mutation and help to identify mechanisms conferring the resilience or susceptibility of some cells and systems over others.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Proteínas del Tejido Nervioso/fisiología , Enfermedad de Parkinson/genética , Edad de Inicio , Encéfalo/metabolismo , Predicción , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Vías Nerviosas , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología
13.
Biochem Soc Trans ; 46(6): 1697-1705, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30514770

RESUMEN

LRRK2 mutation is the most common inherited, autosomal dominant cause of Parkinson's disease (PD) and has also been observed in sporadic cases. Most mutations result in increased LRRK2 kinase activity. LRRK2 is highly expressed in brain regions that receive dense, convergent innervation by dopaminergic and glutamatergic axons, and its levels rise developmentally coincident with glutamatergic synapse formation. The onset and timing of expression suggests strongly that LRRK2 regulates the development, maturation and function of synapses. Several lines of data in mice show that LRRK2-G2019S, the most common LRRK2 mutation, produces an abnormal gain of pathological function that affects synaptic activity, spine morphology, persistent forms of synapse plasticity and behavioral responses to social stress. Effects of the mutation can be detected as early as the second week of postnatal development and can last or have consequences that extend into adulthood and occur in the absence of dopamine loss. These data suggest that the generation of neural circuits that support complex behaviors is modified by LRRK2-G2019S. Whether such alterations impart vulnerability to neurons directly or indirectly, they bring to the forefront the idea that neural circuits within which dopamine neurons eventually degenerate are assembled and utilized in ways that are distinct from circuits that lack this mutation and may contribute to non-motor symptoms observed in humans with PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Humanos , Mutación/genética
14.
J Neurosci ; 38(45): 9700-9711, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30249796

RESUMEN

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a prevalent cause of late-onset Parkinson's disease, producing psychiatric and motor symptoms, including depression, that are indistinguishable from sporadic cases. Here we tested how this mutation impacts depression-related behaviors and associated synaptic responses and plasticity in mice expressing a Lrrk2-G2019S knock-in mutation. Young adult male G2019S knock-in and wild-type mice were subjected to chronic social defeat stress (CSDS), a validated depression model, and other tests of anhedonia, anxiety, and motor learning. We found that G2019S mice were highly resilient to CSDS, failing to exhibit social avoidance compared to wild-type mice, many of which exhibited prominent social avoidance and were thus susceptible to CSDS. In the absence of CSDS, no behavioral differences between genotypes were found. Whole-cell recordings of spiny projection neurons (SPNs) in the nucleus accumbens revealed that glutamatergic synapses in G2019S mice lacked functional calcium-permeable AMPARs, and following CSDS, failed to accumulate inwardly rectifying AMPAR responses characteristic of susceptible mice. Based on this abnormal AMPAR response profile, we asked whether long-term potentiation (LTP) of corticostriatal synaptic strength was affected. We found that both D1 receptor (D1R)- and D2R-SPNs in G2019S mutants were unable to express LTP, with D2R-SPNs abnormally expressing long-term depression following an LTP-induction protocol. Thus, G2019S promotes resilience to chronic social stress in young adulthood, likely reflecting synapses constrained in their ability to undergo experience-dependent plasticity. These unexpected findings may indicate early adaptive coping mechanisms imparted by the G2019S mutation.SIGNIFICANCE STATEMENT The G2019S mutation in LRRK2 causes late-onset Parkinson's disease (PD). LRRK2 is highly expressed in striatal neurons throughout life, but it is unclear how mutant LRRK2 affects striatal neuron function and behaviors in young adulthood. We addressed this question using Lrrk2-G2019S knock-in mice. The data show that young adult G2019S mice were unusually resilient to a depression-like syndrome resulting from chronic social stress. Further, mutant striatal synapses were incapable of forms of synaptic plasticity normally accompanying depression-like behavior and important for supporting the full range of cognitive function. These data suggest that in humans, LRRK2 mutation may affect striatal circuit function in ways that alter normal responses to stress and could be relevant for treatment strategies for non-motor PD symptoms.


Asunto(s)
Relaciones Interpersonales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Plasticidad Neuronal/fisiología , Enfermedad de Parkinson/genética , Resiliencia Psicológica , Estrés Psicológico/genética , Factores de Edad , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
15.
Nat Neurosci ; 20(9): 1247-1259, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28783139

RESUMEN

Antipsychotic drugs remain the standard for schizophrenia treatment. Despite their effectiveness in treating hallucinations and delusions, prolonged exposure to antipsychotic medications leads to cognitive deficits in both schizophrenia patients and animal models. The molecular mechanisms underlying these negative effects on cognition remain to be elucidated. Here we demonstrate that chronic antipsychotic drug exposure increases nuclear translocation of NF-κB in both mouse and human frontal cortex, a trafficking event triggered via 5-HT2A-receptor-dependent downregulation of the NF-κB repressor IκBα. This upregulation of NF-κB activity led to its increased binding at the Hdac2 promoter, thereby augmenting Hdac2 transcription. Deletion of HDAC2 in forebrain pyramidal neurons prevented the negative effects of antipsychotic treatment on synaptic remodeling and cognition. Conversely, virally mediated activation of NF-κB signaling decreased cortical synaptic plasticity via HDAC2. Together, these observations may aid in developing therapeutic strategies to improve the outcome of schizophrenia treatment.


Asunto(s)
Antipsicóticos/efectos adversos , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/metabolismo , Histona Desacetilasa 2/metabolismo , FN-kappa B/metabolismo , Sinapsis/metabolismo , Animales , Antipsicóticos/toxicidad , Trastornos del Conocimiento/genética , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Células HEK293 , Histona Desacetilasa 2/deficiencia , Histona Desacetilasa 2/genética , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , FN-kappa B/genética , Sinapsis/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología
16.
J Neurosci ; 37(31): 7547-7559, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28663197

RESUMEN

Calcium-dependent nuclear export of histone deacetylase 1 (HDAC1) was shown previously to precede axonal damage in culture, but the in vivo relevance of these findings and the potential posttranslational modifications of HDAC1 remained elusive. Using acute hippocampal slices from mice of either sex with genetic conditional ablation of Hdac1 in CA1 hippocampal neurons (i.e., Camk2a-cre;Hdac1fl/fl), we show significantly diminished axonal damage in response to neurotoxic stimuli. The protective effect of Hdac1 ablation was detected also in CA3 neurons in Grik4-cre;Hdac1fl/f mice, which were more resistant to the excitotoxic damage induced by intraventricular injection of kainic acid. The amino acid residues modulating HDAC1 subcellular localization were identified by site-directed mutagenesis, which identified serine residues 421 and 423 as critical for its nuclear localization. The physiological phosphorylation of HDAC1 was decreased by neurotoxic stimuli, which stimulated the phosphatase enzymatic activity of calcineurin. Treatment of neurons with the calcineurin inhibitors FK506 or cyclosporin A resulted in nuclear accumulation of phospho-HDAC1 and was neuroprotective. Together, our data identify HDAC1 and the phosphorylation of specific serine residues in the molecule as potential targets for neuroprotection.SIGNIFICANCE STATEMENT The importance of histone deacetylation in normal brain functions and pathological conditions is unquestionable, yet the molecular mechanisms responsible for the neurotoxic potential of histone deacetylase 1 (HDAC1) and its subcellular localization are not fully understood. Here, we use transgenic lines to define the in vivo relevance of HDAC1 and identify calcineurin-dependent serine dephosphorylation as the signal modulating the neurotoxic role of HDAC1 in response to neurotoxic stimuli.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Ácido Kaínico/envenenamiento , Neuronas/metabolismo , Serina/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Histona Desacetilasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neurotoxinas/envenenamiento , Fosforilación/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Distribución Tisular
17.
J Neurosci ; 36(27): 7128-41, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383589

RESUMEN

UNLABELLED: Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function. SIGNIFICANCE STATEMENT: Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson's disease (PD) heritability. How such mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal development when activity plays a large role in permanently shaping neural circuits, our data show how the most common PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum. These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose striatal circuitry to both motor and nonmotor dysfunction later in life.


Asunto(s)
Cuerpo Estriado/patología , Regulación del Desarrollo de la Expresión Génica/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neuronas/fisiología , Enfermedad de Parkinson/genética , Animales , Animales Recién Nacidos , Cuerpo Estriado/fisiopatología , Dendritas/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/patología , Técnicas de Placa-Clamp , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
19.
Curr Top Dev Biol ; 112: 415-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25733148

RESUMEN

It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.


Asunto(s)
Encéfalo/metabolismo , Cadherinas/metabolismo , Plasticidad Neuronal , Sinapsis/fisiología , Transmisión Sináptica , Animales , Humanos , Transducción de Señal
20.
J Comp Neurol ; 523(1): 75-92, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25158904

RESUMEN

Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses.


Asunto(s)
Cadherinas/metabolismo , Cuerpo Estriado/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Dendritas/fisiología , Femenino , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA