Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 116(3): 662-673, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-36930576

RESUMEN

Pollen is an essential component of bee diets, and rearing bumble bees (Bombus spp.) for commercial use necessitates feeding pollen in mass quantities. This pollen is collected from honey bee (Apis mellifera L.) colonies because neither an artificial diet nor an economical, large-scale pollen collection process from flowers is available. The provenance of honey bee-collected pollen is often unknown, and in some cases has crossed international borders. Both deformed wing virus (DWV) and the fungal pathogen Ascosphaera apis (Claussen) Olive & Spiltoir (cause of chalkbrood disease); occur in honey bee-collected pollen, and infections have been observed in bumble bees. We used these pathogens as general surrogates for viruses and spore-forming fungal diseases to test the efficacy of 3 sterilization methods, and assessed whether treatment altered pollen quality for the bumble bee. Using honey bee-collected pollen spiked with known doses of DWV and A. apis, we compared gamma irradiation (GI), ozone fumigation (OZ), and ethylene oxide fumigation (EO) against an untreated positive control and a negative control. Following sterilization treatments, we tested A. apis spore viability, detected viral presence with PCR, and tested palatability to the bumble bee Bombus impatiens Cresson. We also measured bacterial growth from pollens treated with EO and GI. GI and EO outperformed OZ treatment in pathogen suppression. EO had the highest sterilizing properties under commercial conditions and retained palatability and supported bee development better than other treatments. These results suggest that EO sterilization reduces pathogen risks while retaining pollen quality as a food source for rearing bumble bees.


Asunto(s)
Virus ARN , Abejas , Animales , Virus ARN/genética , Reacción en Cadena de la Polimerasa , Polen , Dieta
2.
J Vis Exp ; (161)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32716391

RESUMEN

To verify the plant sources from which bumble bees forage for pollen, individuals must be collected to remove their corbicular pollen loads for analysis. This has traditionally been done by netting foragers at nest entrances or on flowers, chilling the bees on ice, and then removing the pollen loads from the corbiculae with forceps or a brush. This method is time and labor intensive, may alter normal foraging behavior, and can result in stinging incidents for the worker performing the task. Pollen traps, such as those used on honey bee hives, collect pollen by dislodging corbicular pollen loads from the legs of workers as they pass through screens at the nest entrance. Traps can remove a large quantity of pollen from returning forager bees with minimal labor, yet to date no such trap is available for use with bumble bee colonies. Workers within a bumble bee colony can vary in size making size selection of entrances difficult to adapt this mechanism to commercially reared bumble bee hives. Using 3D printing design programs, we created a pollen trap that successfully removes the corbicular pollen loads from the legs of returning bumble bee foragers. This method significantly reduces the amount of time required by researchers to collect pollen from bumble bee foragers returning to the colony. We present the design, results of pollen removal efficiency tests, and suggest areas of modifications for investigators to adapt traps to a variety of bumble bee species or nest box designs.


Asunto(s)
Abejas , Polen , Impresión Tridimensional , Animales , Flores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...