Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 31(2): 305-319.e10, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36634679

RESUMEN

Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.


Asunto(s)
Culicidae , Malaria , Parásitos , Animales , Femenino , Masculino , Parásitos/metabolismo , Malaria/parasitología , Plasmodium berghei/genética , Desarrollo Sexual/genética , Culicidae/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Nat Microbiol ; 4(11): 1798-1804, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31332387

RESUMEN

Microsporidia are eukaryotic parasites that infect essentially all animal species, including many of agricultural importance1-3, and are significant opportunistic parasites of humans4. They are characterized by having a specialized infection apparatus, an obligate intracellular lifestyle5, rudimentary mitochondria and the smallest known eukaryotic genomes5-7. Extreme genome compaction led to minimal gene sizes affecting even conserved ancient complexes such as the ribosome8-10. In the present study, the cryo-electron microscopy structure of the ribosome from the microsporidium Vairimorpha necatrix is presented, which illustrates how genome compaction has resulted in the smallest known eukaryotic cytoplasmic ribosome. Selection pressure led to the loss of two ribosomal proteins and removal of essentially all eukaryote-specific ribosomal RNA (rRNA) expansion segments, reducing the rRNA to a functionally conserved core. The structure highlights how one microsporidia-specific and several repurposed existing ribosomal proteins compensate for the extensive rRNA reduction. The microsporidian ribosome is kept in an inactive state by two previously uncharacterized dormancy factors that specifically target the functionally important E-site, P-site and polypeptide exit tunnel. The present study illustrates the distinct effects of evolutionary pressure on RNA and protein-coding genes, provides a mechanism for ribosome inhibition and can serve as a structural basis for the development of inhibitors against microsporidian parasites.


Asunto(s)
Microsporidios/clasificación , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Microscopía por Crioelectrón , Evolución Molecular , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Microsporidios/genética , Microsporidios/metabolismo , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo
3.
Elife ; 82019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31206356

RESUMEN

Eukaryotic ribosome biogenesis is initiated with the transcription of pre-ribosomal RNA at the 5' external transcribed spacer, which directs the early association of assembly factors but is absent from the mature ribosome. The subsequent co-transcriptional association of ribosome assembly factors with pre-ribosomal RNA results in the formation of the small subunit processome. Here we show that stable rRNA domains of the small ribosomal subunit can independently recruit their own biogenesis factors in vivo. The final assembly and compaction of the small subunit processome requires the presence of the 5' external transcribed spacer RNA and all ribosomal RNA domains. Additionally, our cryo-electron microscopy structure of the earliest nucleolar pre-ribosomal assembly - the 5' external transcribed spacer ribonucleoprotein - provides a mechanism for how conformational changes in multi-protein complexes can be employed to regulate the accessibility of binding sites and therefore define the chronology of maturation events during early stages of ribosome assembly.


Asunto(s)
Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/metabolismo , Modelos Moleculares , Conformación Molecular , Dominios Proteicos , Precursores del ARN/química , Precursores del ARN/genética , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Subunidades Ribosómicas Pequeñas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
Nature ; 556(7699): 126-129, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512650

RESUMEN

Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.


Asunto(s)
Nucléolo Celular/química , Microscopía por Crioelectrón , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae , Reactivos de Enlaces Cruzados/química , Modelos Moleculares , Imitación Molecular , Dominios Proteicos , Estabilidad Proteica , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Reproducibilidad de los Resultados , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
5.
Curr Opin Struct Biol ; 49: 85-93, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29414516

RESUMEN

The small subunit processome is the first precursor of the small eukaryotic ribosomal subunit. During its assembly in the nucleolus, many ribosome biogenesis factors, an RNA chaperone, and ribosomal proteins associate with the nascent pre-rRNA. Biochemical studies have elucidated the rRNA-subdomain dependent recruitment of these factors during SSU processome assembly and have been complemented by structural studies of the assembled particle. Ribosome biogenesis factors encapsulate and guide subdomains of pre-ribosomal RNA in distinct compartments. This prevents uncoordinated maturation and enables processing of regions not accessible in the mature subunit. By sequentially reducing conformational freedom, flexible proteins facilitate the incorporation of dynamic subcomplexes into a globular particle. Large rearrangements within the SSU processome are required for compaction into the mature small ribosomal subunit.


Asunto(s)
ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Animales , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas/química
6.
Nat Struct Mol Biol ; 24(11): 944-953, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945246

RESUMEN

The small-subunit processome represents the earliest stable precursor of the eukaryotic small ribosomal subunit. Here we present the cryo-EM structure of the Saccharomyces cerevisiae small-subunit processome at an overall resolution of 3.8 Å, which provides an essentially complete near-atomic model of this assembly. In this nucleolar superstructure, 51 ribosome-assembly factors and two RNAs encapsulate the 18S rRNA precursor and 15 ribosomal proteins in a state that precedes pre-rRNA cleavage at site A1. Extended flexible proteins are employed to connect distant sites in this particle. Molecular mimicry and steric hindrance, as well as protein- and RNA-mediated RNA remodeling, are used in a concerted fashion to prevent the premature formation of the central pseudoknot and its surrounding elements within the small ribosomal subunit.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , ARN Ribosómico 18S/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura
7.
Science ; 355(6321)2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-27980088

RESUMEN

The small subunit (SSU) processome, a large ribonucleoprotein particle, organizes the assembly of the eukaryotic small ribosomal subunit by coordinating the folding, cleavage, and modification of nascent pre-ribosomal RNA (rRNA). Here, we present the cryo-electron microscopy structure of the yeast SSU processome at 5.1-angstrom resolution. The structure reveals how large ribosome biogenesis complexes assist the 5' external transcribed spacer and U3 small nucleolar RNA in providing an intertwined RNA-protein assembly platform for the separate maturation of 18S rRNA domains. The strategic placement of a molecular motor at the center of the particle further suggests a mechanism for mediating conformational changes within this giant particle. This study provides a structural framework for a mechanistic understanding of eukaryotic ribosome assembly in the model organism Saccharomyces cerevisiae.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Conformación de Ácido Nucleico , Conformación Proteica en Lámina beta , ARN de Hongos/química , ARN de Hongos/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , ARN Ribosómico 18S/química , ARN Ribosómico 18S/ultraestructura , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
8.
Nat Commun ; 7: 12090, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27354316

RESUMEN

Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes-UtpA and UtpB-interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.


Asunto(s)
Chaperonas Moleculares/fisiología , ARN de Hongos/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/fisiología , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Nat Struct Mol Biol ; 22(11): 920-3, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26479197

RESUMEN

Eukaryotic ribosome biogenesis involves a plethora of ribosome-assembly factors, and their temporal order of association with preribosomal RNA is largely unknown. By using Saccharomyces cerevisiae as a model organism, we developed a system that recapitulates and arrests ribosome assembly at early stages, thus providing in vivo snapshots of nascent preribosomal particles. Here we report the stage-specific order in which 70 ribosome-assembly factors associate with preribosomal RNA domains, thereby forming the 6-MDa small-subunit processome.


Asunto(s)
Biogénesis de Organelos , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/fisiología , Sustancias Macromoleculares/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...