Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(14): 5163-5173, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577356

RESUMEN

Organic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.86 µs. Its RTP properties are significantly promoted with an extended lifetime up to 2.12 s and considerable quantum yield of 6.29% after assembly with a polyvinyl alcohol (PVA) matrix. By virtue of the intrinsic self-crimping configuration of ACB-COOH, organic guests, including fluorescence dyes (Rhodamine B (RhB) and Pyronin Y (PyY)) and a drug molecule (morphine (Mor)), could be fully encapsulated by ACB-COOH to attain energy transfer involving phosphorescent acyclic cucurbituril. Ultimately, as-prepared systems are successfully exploited to establish multicolor afterglow materials and visible sensing of morphine. As an expansion of phosphorescent acyclic cucurbituril, the host afterglow color can be readily regulated by attaching different aromatic sidewalls. This study develops the fabrication strategies and application scope of a supramolecular phosphorescent host and opens up a new direction for the manufacture of intelligent long-lived luminescent materials.

2.
Nat Rev Chem ; 7(12): 854-874, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993737

RESUMEN

Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process. These interactions promote intersystem crossing, restricting the motion of phosphors, minimizing non-radiative decay and organizing donor-acceptor pairs in close proximity. We discuss the applications of these systems and focus on the challenges ahead in facilitating their further development.

3.
J Sci Food Agric ; 103(14): 6912-6919, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37319235

RESUMEN

BACKGROUND: Citrus residuals are rich in nutrients like pectin, essential oil, and amino acids, which are wasted in the food industry. Moreover, citrus components often coexist with amino acids during emulsion preparation and application. RESULTS: Adding glutamic or arginine after emulsification resulted in a stable emulsion compared with adding them before emulsification. Adding glycine before or after emulsification had no effect on the emulsion stability. Emulsion stability was improved by adding glutamic acid at pH 6. Ionic interaction and hydrogen bonding were the main forms of bonding. The rhamnogalacturonan II domain was the potential binding site for the amino acids. CONCLUSIONS: The emulsions prepared by adding acidic amino acids or basic amino acids after emulsification were stable relative to those in which the amino acids were added before emulsification. However, the order in which neutral amino acids were added did not affect the emulsion stability after storage for 7 days. With an increase in the pH level, droplet size increased and emulsion stability decreased. All the results could be attributed to changes in the structure and properties of citrus pectin, as well as the interaction between citrus pectin and amino acids. This study may expand the application of citrus-derived emulsions in the food industry. © 2023 Society of Chemical Industry.


Asunto(s)
Aminoácidos , Citrus , Emulsiones/química , Citrus/química , Pectinas/química , Concentración de Iones de Hidrógeno
4.
Angew Chem Int Ed Engl ; 61(44): e202213097, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36094757

RESUMEN

Herein, we reported solid supramolecular bromonaphthylpyridinium polymers (P-BrNp), which exhibit tunable phosphorescence emission in the amorphous state enabled by sulfobutylether-ß-cyclodextrin (SBE-ß-CD) and diarylethene derivatives. The monomer BrNp gave single fluorescence emission at 490 nm, while an apparent room-temperature phosphorescence (RTP) at 550 nm emerged for P-BrNp copolymers with various feed ratios. Through fluorescence-phosphorescence dual emission, P-BrNp-0.1 displayed an ultrahigh white-light emission quantum yield of 83.9 %. Moreover, the subsequent assembly with SBE-ß-CD further enhanced the phosphorescent quantum yield of P-BrNp-0.1 from 64.1 % to 71.3 %, accompanied by the conversion of photoluminescence emission from white to yellow. Diarylethene monomers were introduced as photoswitches to realize reversible RTP emission, which can be used in switchable data encryption and multifunctional writing ink.

5.
Biomacromolecules ; 23(9): 3549-3559, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35921592

RESUMEN

The construction of supramolecular multivalent assemblies with unique photoluminescence behaviors and biological functions has become a research hot spot recently in the biomaterial field. Herein, we report an adaptive supramolecular assembly via a multivalent co-assembly strategy prepared in two stages by using an adamantane-connected pyrenyl pyridinium derivative (APA2), sulfonated aluminum phthalocyanine (PcS), and folic acid-modified ß-cyclodextrin (FA-CD) for efficient dual-organelle targeted photodynamic cancer cell ablation. Benefiting from π-π and electrostatic interactions, APA2 and PcS could first assemble into non-fluorescent irregular nanoaggregates because of the heterodimer aggregation-induced quenching and then secondarily assemble with FA-CD to afford targeted spherical nanoparticles (NPs) with an average diameter of around 50 nm, which could be specifically taken up by HeLa cancer cells through endocytosis in comparison with 293T normal cells. Intriguingly, such multivalent NPs could adaptively disaggregate in an intracellular physiological environment of cancer cells and further respectively and selectively accumulate in mitochondria and lysosomes, which not only displayed near-infrared two-organelle localization in situ but also aroused efficient singlet oxygen generation under light irradiation to effectively eliminate cancer cells up to 99%. This supramolecular multivalent assembly with an adaptive feature in a specific cancer cell environment provides a feasible strategy for precise organelle-targeted imaging and an efficiently synergetic photodynamic effect in situ for cancer cell ablation.


Asunto(s)
Ciclodextrinas , Nanopartículas , Fotoquimioterapia , Ácido Fólico , Células HeLa , Humanos
6.
Adv Sci (Weinh) ; 9(22): e2201523, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35652258

RESUMEN

A two-step sequential phosphorescence harvesting system with ultralarge Stokes shift and near-infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2-diaminocyclohexan-derived 6-bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close-packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long-lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling.


Asunto(s)
Rayos Infrarrojos , Radiación
7.
Adv Mater ; 34(38): e2203534, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35771589

RESUMEN

Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and ß-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly G⊂CB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the ß-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary G⊂CB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly G⊂CB[7] @ HACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials.


Asunto(s)
Porfirinas , beta-Ciclodextrinas , Colorantes , Transferencia Resonante de Energía de Fluorescencia/métodos , Ácido Hialurónico , Polimerizacion , Temperatura , Agua
8.
J Org Chem ; 87(12): 7658-7664, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35658514

RESUMEN

The photoisomerization behavior of cyanostilbene molecules is a hotspot in supramolecular configuration transformation research. Here, we reported a cyanostilbene derivative that converted from the Z,Z-isomer to the E,E-isomer under UV light irradiation at 365 nm. This process can be reversibly converted only in the presence of cucurbit[8]uril under the same light source, accompanied by the reversible conversion of fluorescence from green to yellow. No effective configuration transformation occurred with guest molecules only or upon the addition of cucurbit[7]uril. The photoisomerization was fully characterized by UV-vis and fluorescence spectroscopy, NMR, high-resolution mass spectrometry, and transmission electron microscopy. This work provides a new method for the supramolecular macrocyclic-activated configuration transformation.

9.
Adv Sci (Weinh) ; 9(14): e2200524, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35285166

RESUMEN

Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.


Asunto(s)
Nanopartículas , Radiación , Fluorescencia , Luminiscencia , Temperatura
10.
Small ; 18(1): e2104514, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741495

RESUMEN

The construction of highly effective phosphorescence energy transfer capturing system still remains great challenge in aqueous phase. Herein, a high-efficiency supramolecular purely organic room temperature phosphorescence (RTP)-capturing system via a secondary assembly strategy by taking advantage of cucurbit[8]uril (CB[8]) and amphiphilic calixarene (SC4AH) is reported. Comparing with free bromonaphthalene-connected methoxyphenyl pyridinium salt (G), G⊂CB[8] exhibits an emerging RTP emission peak at 530 nm. Moreover, G⊂CB[8] further interacts with SC4AH to form the ternary assembly G⊂CB[8]  @  SC4AH accompanied by remarkably enhanced RTP emission. Interestingly, RTP-capturing systems with delayed near-infrared (NIR) emissive performance (635, 675 nm) are feasibly acquired by introducing Nile Red (NiR) or Nile Blue (NiB) as the acceptor into hydrophobic layer of G⊂CB[8] @ SC4AH, possessing ultrahigh antenna effects (352.9, 123.5) at a high donor/acceptor ratio (150:1, 300:1). More importantly, cell experiments indicate that G⊂CB[8]  @  SC4AH/NiB not only hold low cytotoxicity but also can successfully realize NIR lysosome-targeted imaging of A549 cancer cells. This RTP-capturing system of delayed NIR emission via multistage assembly strategy offers a new approach for NIR imaging in living cells.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Calixarenos , Imidazoles , Lisosomas
11.
Angew Chem Int Ed Engl ; 60(52): 27171-27177, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34704341

RESUMEN

An ultrahigh supramolecular cascaded phosphorescence-capturing aggregate was constructed by multivalent co-assembly of cucurbit[7]uril (CB[7]) and amphipathic sulfonatocalix[4]arene (SC4AD). The initial dibromophthalimide derivative (G) generated a weak phosphorescent emission at 505 nm by host-guest interaction with CB[7], which further assembled with SC4AD to form homogeneously spherical nanoparticles with a dramatic enhancement of both phosphorescence lifetime to 1.13 ms and emission intensity by 40-fold. Notably, this G⊂CB[7]@SC4AD aggregate exhibited efficient phosphorescence energy transfer to Rhodamine B (RhB) and benzothiadiazole (DBT) with high efficiency (ϕET ) of 84.4 % and 76.3 % and an antenna effect (AE) of 289.4 and 119.5, respectively, and then each of these can function as a bridge to further transfer their energy to second near-IR acceptors Cy5 or Nile blue (NiB) to achieve cascaded phosphorescence energy transfer. The final aggregate with long-range effect from 425 nm to 800 nm and long-lived photoluminescence was further employed as an imaging agent for multicolour cell labeling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA