Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Clin Transl Oncol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292390

RESUMEN

BACKGROUND: Cancer driver genes (CDGs) have been reported as key factors influencing the progression of lung adenocarcinoma (LUAD). However, the role of CDGs in LUAD prognosis has not been fully elucidated. METHODS: LUAD transcriptome data and CDG-related data were obtained from public databases and literature. Differentially expressed CDGs (DE-CDGs) greatly associated with LUAD survival (P < 0.05) were identified to establish a prognostic model. In addition, immune analysis of high-risk (HR) and low-risk (LR) groups was conducted by utilizing the CIBERSORT and single sample gene set enrichment analysis (ssGSEA) algorithms to assess immune differences. Subsequently, mutation analysis was conducted using maftools. Finally, candidate drugs were identified using the CellMiner database. RESULTS: 40 DE-CDGs significantly associated with LUAD survival and 11 DE-CDGs associated with prognosis were identified through screening. Regression analysis revealed that risk score can independently predict LUAD prognosis (P < 0.05). Immune landscape analysis revealed that compared to the HR group, the LR group had higher immune scores and high infiltration of various immune cells such as follicular helper B cells and T cells. Mutation landscape analysis demonstrated that missense mutation was the most common mutation type in both risk groups. Drug prediction analysis revealed strong correlations of fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, SR16157, motesanib, AZD-9496, XK-469, dimethylfasudil, P-529, and imatinib with the model genes, suggesting their potential as candidate drugs targeting the model genes. CONCLUSION: This study identified 11 effective biomarkers, DE-CDGs, which can predict LUAD prognosis and explored the biological significance of CDGs in LUAD prognosis, immunotherapy, and treatment.

2.
Chemosphere ; 363: 142845, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004144

RESUMEN

Nitroaromatic compounds (NACs) in ambient particles are of great concern due to their adverse effects on human health and climate. However, investigations on the characteristics and potential sources of NACs in Southwest China are still scarce. In this study, a field sampling campaign was carried out in the winter of 2022 at a suburban site in Mianyang, Southwest China. A direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to rapidly determine 10 NACs in fine particulate matter (PM2.5) extracts. The method was sensitive for the quantification of the NACs, with a limit of quantification (LOQ) in the range of 0.092-0.52 ng mL-1. Then, the developed method was applied to determine the concentrations of nitrophenols (NPs), nitrocatechols (NCs), nitrosalicylic acids (NSAs), and nitronaphthol in PM2.5 in Mianyang. The average concentration of total NACs was 78.2 ± 31.2 ng m-3, with daily concentrations ranging from 20.7 to 127.9 ng m-3. Among the measured NACs, 4-nitrocatechol was the most abundant, accounting for 57.8% of the NACs in winter. The five NPs compounds together contributed to 14% of the NACs, which was lower than in other Chinese cities due to the warm climate in winter in Southwest China. NSAs and nitronaphthol each accounted for less than 5% of the NACs. Three major sources of NACs were identified based on the principal component analysis, including vehicle emissions, biomass burning, and secondary formation. The significant correlation between individual NACs and NO2 supported their secondary formation sources. The good correlation between NPs and cloud amount further suggested that gas-phase oxidation was the possible NPs formation mechanism. Our findings revealed the important role of nitrocatechols in NACs in Southwest China, implying that more measures should be taken to control biomass burning and aromatic volatile organic compounds emissions to reduce the level of NACs.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , China , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Cromatografía Liquida , Aerosoles/análisis , Nitrocompuestos/análisis , Atmósfera/química
3.
BMC Womens Health ; 24(1): 274, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704534

RESUMEN

BACKGROUND: Giant ovarian cysts (GOCs)complicated with progressive bulbar paralysis (PBP) are very rare, and no such literature about these cases have been reported. Through the diagnosis and treatment of this case, the perioperative related treatment of such patients was analyzed in detail, and early-stage ovarian mucinous carcinoma was unexpectedly found during the treatment, which provided reference for clinical diagnosis and treatment of this kind of diseases. CASE PRESENTATION: In this article, we reported a 38-year-old female patient. The patient was diagnosed with PBP 2 years ago. Examination revealed a large fluid-dominated cystic solid mass in the pelvis measuring approximately 28.6×14.2×8.0 cm. Carbohydrate antigen19-9(CA19-9) 29.20 IU/mL and no other significant abnormalities were observed. The patient eventually underwent transabdominal right adnexal resection under regional anesthesia, epidural block. Postoperative pathology showed mucinous carcinoma in some areas of the right ovary. The patient was staged as stage IA, and surveillance was chosen. With postoperative follow-up 1 month later, her CA19-9 decreased to 14.50 IU/ml. CONCLUSIONS: GOCs combined with PBP patients require a multi-disciplinary treatment. Preoperative evaluation of the patient's PBP progression, selection of the surgical approach in relation to the patient's fertility requirements, the nature of the ovarian cyst and systemic condition are required. Early mucinous ovarian cancer accidentally discovered after operation and needs individualized treatment according to the guidelines and the patient's situation. The patient's dysphagia and respiratory function should be closely monitored during the perioperative period. In addition, moral support from the family is also very important.


Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias Ováricas , Humanos , Femenino , Adulto , Neoplasias Ováricas/complicaciones , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/diagnóstico , Adenocarcinoma Mucinoso/complicaciones , Adenocarcinoma Mucinoso/cirugía , Adenocarcinoma Mucinoso/diagnóstico , Atención Perioperativa/métodos , Quistes Ováricos/cirugía , Quistes Ováricos/complicaciones , Quistes Ováricos/diagnóstico , Estadificación de Neoplasias
4.
Chemosphere ; 349: 140796, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029936

RESUMEN

Atmospheric humic-like substances (HULIS) could affect regional climate due to their strong light-absorbing capacity. Daily fine particulate matter (PM2.5) samples were collected from December 18, 2016 to January 8, 2017 at an urban site in Chongqing, Southwest China. The mean concentration of HULIS in terms of carbon (HULIS-C) was 6.4 ± 3.4 µg m-3, accounting for 72% of water-soluble organic carbon. The mass absorption efficiency at 365 nm (MAE365) and absorption Ångström index (AAE) of atmospheric HULIS were 2.8 ± 0.30 m2 g-1 C and 4.6 ± 0.37, respectively. Good correlations between the light absorption coefficients of HULIS at 365 nm (Abs365) and the concentrations of K+, elemental carbon, NO3-, and NH4+ were observed, with correlation coefficients higher than 0.83, indicating that biomass burning and secondary formation were potential sources of light-absorbing HULIS, as evidenced by abundant fluorescent components related to less-oxygenated HULIS. Comparing the changes in Abs365 values, concentrations of major water-soluble inorganic ions and carbonaceous compounds in PM2.5, and environmental factors during the clean and pollution periods, we found that extensive biomass burning during the pollution period contributed significantly to the increase of Abs365 values. Moreover, the aerosol pH during the pollution period was close to 4, and NO2 concentration and aerosol water content were about 1.6 and 2.7 times higher than those during the clean period, respectively, which were favorable to form secondary HULIS through aqueous phase reactions in the presence of high NOx, resulting in an evident increase in its light absorption. Knowledge generated from this study is critical for evaluating the regional radiative forcing of brown carbon in southwest China.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Sustancias Húmicas/análisis , Agua/química , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Carbono/análisis , Aerosoles/análisis
5.
Environ Pollut ; 330: 121789, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164219

RESUMEN

Inorganic mineral particles play an important role in the formation of atmospheric aerosols in the Sichuan Basin. Atmospheric haze formation is accompanied by the phase transition of mineral particles under high humidity and stable climatic conditions. Backward trajectory analysis was used in this study to determine the migration trajectory of atmospheric mineral particles. Furthermore, Positive matrix factorization (PMF) was used to analyze the sources of atmospheric mineral particles. The phase transition mechanisms of atmospheric mineral particles were studied using ion chromatography, inductively coupled plasma emission spectrometry, total organic carbon analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, and grand canonical Monte Carlo methods. Three migration and phase transition paths were identified for the mineral particles. Sources of atmospheric mineral particles included combustion, vehicle emissions, industrial emissions, agricultural sources, and mineral dust. The main mineral phases in atmospheric particles, calcite and dolomite, were transformed into gypsum, and muscovite may be transformed into kaolinite. The phase transition of mineral particles seriously affects the formation of aerosols and worsens haze. Typically, along the Nanchong-Suining-Neijiang-Zigong-Yibin path, calcite is converted into gypsum under the influence of man-made inorganic pollution gases, which worsen the haze conditions and cause slight air pollution for 3-5 days. However, along the Guangyuan-Mianyang-Deyang-Chengdu-Meishan-Ya'an path, anthropogenic volatile organic compounds (VOCs) hindered gypsum formation from dolomite. Furthermore, dolomite and VOCs formed stable adsorption systems (system energies from -0.41 to -4.76 eV, long bonds from 0.20 to 0.24 nm). The adsorption system of dolomite and m/p-xylene, with low system energy (-1.46 eV/-1.33 eV) and significant correlation (r2 = 0.991, p < 0.01), was the main cause of haze formation. Consequently, calcite gypsification and dolomite--VOC synergism exacerbated regional haze conditions. This study provides a theoretical reference for the mechanism of aerosol formation in basin climates.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Sulfato de Calcio/análisis , Estaciones del Año , Carbonato de Calcio/análisis , Emisiones de Vehículos/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos , China
6.
Environ Toxicol ; 38(2): 403-414, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36282901

RESUMEN

This study aimed to explore whether vitamin B complex (folic acid, B6 , and B12 ) could avert DNA methylation changes associated with inflammation induced by acute PM2.5 exposure. Sprague-Dawley rats were administered by gavage with different concentrations of vitamin B complex once a day for 28 days, and then by intratracheal instillation with saline or PM2.5 once every 2 days for three times. Vitamin B continued to be taken during the PM2.5 exposure. Rats were sacrificed 24 h after the last exposure. The results showed that vitamin B complex could block the pathological changes and injury in lungs induced by PM2.5 . Meanwhile, vitamin B complex could prevent the abnormal DNA methylation of IL-4 and IFN-γ to antagonize the imbalance of IL-4/IFN-γ associated with inflammation. It was further found that vitamin B complex could regulate DNA methyltransferases (DNMTs) and increase the S-adenosylmethionine (SAM)/S-Adenosyl-L-homocysteine (SAH) ratio to reverse the hypomethylation of genomic DNA and the abnormal DNA methylation of IL-4 and IFN-γ. In conclusion, vitamin B complex has a protective effect on acute lung injury by attenuating abnormal DNA methylation induced by PM2.5 in rats. This study may provide a new insight into the physiological function of vitamin B to prevent the health effects induced by PM2.5 .


Asunto(s)
Lesión Pulmonar Aguda , Metilación de ADN , Lesión Pulmonar , Material Particulado , Complejo Vitamínico B , Animales , Ratas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Polvo , Ácido Fólico , Inflamación/patología , Interleucina-4/genética , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Material Particulado/toxicidad , Ratas Sprague-Dawley , S-Adenosilmetionina/toxicidad , Complejo Vitamínico B/farmacología
7.
Environ Toxicol Chem ; 42(3): 594-604, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582152

RESUMEN

Atmospheric micro-/nanominerals play an important role in the adsorption, enrichment, and migration of organochlorine pesticides (OCPs). In the present study, the correlations between OCPs and minerals in outdoor atmospheric dustfall were investigated, and the correlations were used to speculate the source of p,p'-(dicofol+dichlorobenzophenone [DBP]), which is the sum of p,p'-dicofol and p,p'-DBP. Atmospheric dustfall samples were collected from 53 sites in the Chengdu-Deyang-Mianyang economic region in the Sichuan basin. In this region, 24 OCPs were analyzed by gas chromatography-tandem mass spectrometry. The average concentration of 24 OCPs was 51.2 ± 27.4 ng/g. The results showed that the concentration of Σ24 OCPs in urban areas was higher than that in suburban areas (p < 0.05). Minerals in atmospheric dustfall were semiquantitatively analyzed by X-ray diffraction. The primary minerals were quartz, calcite, and gypsum. A Spearman correlation analysis of OCPs and minerals showed that low-volatility OCPs could be adsorbed by minerals in atmospheric dustfall. A density functional theory simulation verified that p,p'-(dicofol+DBP) in atmospheric dustfall was primarily derived from the p,p'-dicofol adsorbed by gypsum. Isomeric ratio results suggested that the samples had weathered lindane and chlordane profiles and confirmed that residents in the Sichuan basin used technical dichlorodiphenyltrichloroethane. Finally, the OCPs were evaluated to determine the potential risk of cancer in adults and children from OCP exposure. Exposure to OCPs via atmospheric dustfall was safe for adults. The cancer risk for children exposed to OCPs was slightly lower than the threshold value (10-6 ) under a high dust ingestion rate, which poses a concern. Environ Toxicol Chem 2023;42:594-604. © 2022 SETAC.


Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Niño , Humanos , Adsorción , Sulfato de Calcio/análisis , Dicofol/análisis , Cromatografía de Gases y Espectrometría de Masas , Plaguicidas/análisis , Hidrocarburos Clorados/análisis , DDT/análisis , Medición de Riesgo , China , Monitoreo del Ambiente/métodos
8.
Environ Toxicol Pharmacol ; 95: 103942, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933082

RESUMEN

Inflammation is one of the major adverse effects of fine particulate matter (PM2.5) on the lung system; however, its mechanisms remain unclear. Rats were exposed to different concentrations of PM2.5 to investigate the mechanism of short-term exposure-induced lung inflammation. The regulation of PI3K-Akt and DNA methyltransferase 3b (DNMT3b) was assessed by using a PI3K inhibitor and a DNA methyltransferase inhibitor. We found that PM2.5 could decrease interferon-γ (IFN-γ) levels and increase interleukin 4 (IL-4), IL-5 and IL-13 levels in bronchoalveolar lavage fluid (BALF) to promote eosinophil infiltration and eventually lead to allergic pulmonary inflammation. Moreover, the CpG island methylation rate of the IFN-γ promoter and the protein expression of DNMT3b, PI3K and p-Akt were increased in lung tissues after PM2.5 exposure. Both inhibitors reversed the CpG island hypermethylation of IFN-γ. In conclusion, in PM2.5-induced lung injury, the activated PI3K-Akt pathway, via an increase in DNMT3b expression, is involved in CpG hypermethylation of the IFN-γ gene promoter.


Asunto(s)
Interleucina-4 , Neumonía , Animales , ADN , ADN (Citosina-5-)-Metiltransferasas , Polvo , Interferón gamma/genética , Interleucina-13 , Interleucina-5 , Pulmón , Material Particulado/toxicidad , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , ADN Metiltransferasa 3B
9.
Sci Total Environ ; 851(Pt 1): 158105, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987225

RESUMEN

Wastewater-based epidemiology (WBE) was applied to estimate illicit drugs consumption at a provincial scale in southwest China. A large-scale wastewater sampling campaign was carried out from October to November in 2021 in 156 different wastewater treatment plants (WWTPs). Two 24-h composite influent wastewater samples were collected in each WWTP. Concentrations of 11 illicit drugs or their metabolites were determined using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Benzoylecgonine, cocaine, 6-monoacetylmorphine, norketamine, 3,4-methylenedioxymethamphetamine (MDMA), and MDA were not detected in any of the wastewater samples. Methamphetamine and morphine were detected in >84% of samples, while ketamine was found in about 6% of the samples. The city-specific population-weighted consumption of methamphetamine and ketamine were in the range of 0.6-49.7 and N.D.-7.0 mg 1000 inh-1 day-1, respectively, with provincial population-weighted values of 22.6 and 2.4 mg 1000 inh-1 day-1 in southwest China. The city-specific load of morphine varied from 3.2 to 10.2 mg 1000 inh-1 day-1, with provincial population-weighted load of 6.7 mg 1000 inh-1 day-1. Taking into account therapeutic use of morphine and codeine, the provincial heroin consumption was estimated to be 10.3 mg 1000 inh-1 day-1, ranging from 1.7 to 18.5 mg 1000 inh-1 day-1 in 21 cities. Overall, the patterns of illicit drugs use were similar across southwest China, with high prevalence of methamphetamine and heroin, but relatively low use of ketamine. These findings could provide accurate drugs consumption information for timely identifying potential hotspots of illicit drugs use in southwest China.


Asunto(s)
Cocaína , Drogas Ilícitas , Ketamina , Metanfetamina , N-Metil-3,4-metilenodioxianfetamina , Contaminantes Químicos del Agua , China/epidemiología , Cromatografía Liquida , Ciudades , Cocaína/análisis , Codeína/análisis , Heroína/análisis , Drogas Ilícitas/análisis , Metanfetamina/análisis , Morfina/análisis , Detección de Abuso de Sustancias/métodos , Espectrometría de Masas en Tándem , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
10.
Med Sci Monit ; 28: e935823, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610956

RESUMEN

BACKGROUND During the COVID-19 pandemic the implementation of a range of measures to suppress transmission, such as social distancing and home confinement resulted in limited sunlight exposure and physical inactivity in people under age 18 years, which can elevate the risk of vitamin D deficiency and insufficiency. The aim of this study was to systemically evaluate the effect of the COVID-19 pandemic on serum vitamin D levels in people under age 18 years. MATERIAL AND METHODS Following the PRISMA recommendations, we searched PubMed, Embase, and the Cochrane Database for trials from inception to November 3, 2021. All trials assessing the effects of the COVID-19 pandemic on serum vitamin D levels in people under age 18 years were included and analyzed. Mean differences (MDs) of serum 25-hydroxyvitamin D (25[OH] D) levels before and during the COVID-19 pandemic were calculated and pooled using a random-effects model. Risk differences were used to assess changes in the proportions of people under age 18 years with vitamin D deficiency. RESULTS Our analysis included 5 studies comprising 4141 people under age 18 years. The combined result MD of serum 25(OH)D levels before and during the COVID-19 pandemic as 3.28 ng/mL, 95% CI=0.95-5.62 ng/mL, P<0.01] indicated serum 25(OH)D levels were significantly lower during the COVID-19 pandemic. The decreased serum 25(OH)D level was not observed among infants (age under 1 year) (P=0.28). CONCLUSIONS During the COVID-19 pandemic, the serum vitamin D levels of people under age 18 years were significantly lower and vitamin D supplementation for people under age 18 years might reduce the risk of COVID-19. More research is needed to validate the present findings.


Asunto(s)
COVID-19 , Deficiencia de Vitamina D , Adolescente , Calcifediol , Humanos , Lactante , Pandemias , Vitamina D , Deficiencia de Vitamina D/epidemiología
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(4): 328-332, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35583062

RESUMEN

Objective To investigate the effect of particulate matter 2.5 (PM2.5) dust on autophagy and epithelial-mesenchymal transition (EMT) in human bronchial epithelial 16HBE cells, and to further explore its underlying mechanism. Methods 16HBE cells were stimulated with PM2.5 dust, and the cell viability was evaluated by CCK-8 assay. The cellular morphology of 16HBE was observed by microscopy and autophagy activation was observed by dansylcadaverine (MDC) staining. Reactive oxygen species (ROS) level was tested by flow cytometry, and protein levels of LC3-II, LC3-I, E-cadherin and α-SMA were examined by Western blot analysis before and after pretreatment with the autophagy inhibitor 3-MA. Resluts PM2.5 dust reduced the survival rate of 16HBE cells. Some cells lost their epithelial characteristics and transformed into mesenchymal cells. Compared with control group, the expression of LC3-II/LC3-I, α-SMA and ROS in PM2.5-treated group showed an increase and E-cadherin was found decreased. In addition, the autophagy inhibitor 3-MA down-regulated the expression of α-SMA, elevated the expression of E-cadherin, and significantly alleviated the ROS level. Conclusion PM2.5 induced autophagy and EMT of 16HBE cells, and autophagy enhances EMT.


Asunto(s)
Polvo , Transición Epitelial-Mesenquimal , Autofagia , Cadherinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Material Particulado/efectos adversos , Especies Reactivas de Oxígeno/metabolismo
12.
ACS Appl Mater Interfaces ; 14(11): 13419-13430, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35275489

RESUMEN

Crystalline carbon nitride (CCN) with a poly(heptazine imide) structure is efficient in photocatalytic hydrogen evolution (PHE), but synthesis of CCN ultrathin nanosheets (CCNuns) and their use in PHE with selective organic oxidation are still rare. Herein, CCNuns with Na+ doping are prepared using NaCl as the ion-induction and templating agent and mesoporous melon as the feedstock, exhibiting efficient synchronous PHE and benzyl alcohol oxidation to benzaldehyde, with an apparent quantum yield of 10.5% at 420 nm and a visible light PHE rate that is 94.3 times that of bulk polymeric carbon nitride (PCN). The selectivity of benzaldehyde formation (90.5%) is also much higher than that of PCN (40.7%). Interestingly, this selectivity increases gradually with increasing light wavelengths. The high photoactivity of CCNuns originates from their ultrathinness and Na+ doping, which considerably enhance the photogenerated charge separation. This work opens up an avenue for the synthesis of CCNuns and extends their application.

13.
Chem Sci ; 13(3): 754-762, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35173940

RESUMEN

Expediting the oxygen evolution reaction (OER) is the key to achieving efficient photocatalytic overall water splitting. Herein, single-atom Co-OH modified polymeric carbon nitride (Co-PCN) was synthesized with single-atom loading increased by ∼37 times with the assistance of ball milling that formed ultrathin nanosheets. The single-atom Co-N4OH structure was confirmed experimentally and theoretically and was verified to enhance optical absorption and charge separation and work as the active site for the OER. Co-PCN exhibits the highest OER rate of 37.3 µmol h-1 under visible light irradiation, ∼28-fold higher than that of common PCN/CoO x , with the highest apparent quantum yields reaching 4.69, 2.06, and 0.46% at 400, 420, and 500 nm, respectively, and is among the best OER photocatalysts reported so far. This work provides an effective way to synthesize efficient OER photocatalysts.

14.
Front Hum Neurosci ; 16: 843186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741778

RESUMEN

Background: Previous studies indicated the sedative effect of acupoint stimulation. However, its mechanism remains unclear. This study aimed to investigate the sedative effect of transcutaneous electrical acupoint stimulation (TEAS) and to explore the brain regions involved in this effect in healthy volunteers using functional magnetic resonance imaging (fMRI) techniques. Methods: In this randomized trial, 26 healthy volunteers were randomly assigned to the TEAS group (receiving 30 min of acupoint stimulation at HT7/PC4) and the control group. fMRI was conducted before and after the intervention. The primary outcome was the BIS value during the intervention. Secondary outcomes included the amplitude of low-frequency fluctuation (ALFF) and region of interest (ROI)-based functional connectivity (FC) showed by fMRI. Results: In healthy volunteers, compared with the control group, ALFF values in the TEAS-treated volunteers decreased in the left thalamus, right putamen, and midbrain, while they increased in the left orbitofrontal cortex. More FC existed between the thalamus and the insula, middle cingulate cortex, somatosensory cortex, amygdala, and putamen in subjects after TEAS treatment compared with subjects that received non-stimulation. In addition, ALFF values of the thalamus positively correlated with BIS in both groups. Conclusion: Transcutaneous electrical acupoint stimulation could induce a sedative effect in healthy volunteers, and inhibition of the thalamus was among its possible mechanisms. Clinical trial registration: www.ClinicalTrials.gov; identifier: NCT01896063.

15.
Sci Total Environ ; 777: 146118, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33684766

RESUMEN

Cadmium (Cd) contamination in rice paddy fields constitutes a serious health issue in some parts of China. Here we study the potential for remediation of Cd contaminated alkaline paddy soil with low iron (Fe) and high copper (Cu) background by altering the concentrations of Fe and Cu in the growing media, which has been only seldom considered. We assessed how these two micronutrients (Cu and Fe) affect the absorption and transport of Cd in rice. Adding Cu significantly increased rice biomass and grain yield by reducing root Cd influx and Cd upward transport which, consequently, lowered Cd concentrations in roots, culms and leaves. However, excessive Cu also promoted a relatively higher Cd allocation in grains, especially under Fe deficiency, likely because Cu significantly increased the proportion of bioavailable Cd in leaves. Contrastingly, Fe did not alleviate the toxic effects of Cd on rice growth and yield, but it significantly reduced Cd transfer towards grains, which might be attributed to a sharp decrease in the proportion of bioavailable Cd in leaves. Our results demonstrated that Cd remediation may be achieved through altering Fe and Cu inputs, such that Cd accumulation in rice grains is reduced.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , China , Cobre/toxicidad , Hierro/análisis , Micronutrientes , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
16.
RSC Adv ; 11(38): 23241-23248, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479788

RESUMEN

The photoelectrochemical reduction of U(vi) is recognized as an economical and effective way to eliminate radioactive pollution. In this study, we construct a α-Fe2O3/TiO2 film electrode-based photoelectrochemical cell to remove U(vi) and recover uranium from aqueous solution. Citric acid and oxalic acid could act as hole scavengers, being favorable for the photocatalytic reduction of U(vi). In the presence of 0.5 mM citric acid and oxalic acid, the uranium removal capacity reached 70% and 58%, respectively, while 24% was achieved for the system in the absence of acid. The XRD, SEM, FT-IR and XPS results revealed that a proportion of U(iv) was also precipitated as surface associated metastudtite. These novel observations have significant implications for the behavior of uranium within engineered and natural environments.

17.
Ecotoxicol Environ Saf ; 208: 111414, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33080424

RESUMEN

Fine atmospheric particles with a diameter of 2.5 µm or less (PM2.5) have a large specific surface area, and carry a variety of organic matter, heavy metals, minerals and bacteria. They are an important risk factor in human non-communicable disease. To explore the molecular regulatory mechanism of the airway inflammation caused by PM2.5, an in vitro human bronchial epithelial (16HBE) cells poisoning model was deployed. Results showed that PM2.5 had a strong inhibitory effect on cells viability, and induced cells to secrete high levels of IL-6 and CXCL 8. These two biomarkers of inflammation were significantly reduced in the presence of TAK 242. TLR4, MyD88, IKK, and p-p65 proteins were highly expressed on exposure to PM2.5. Pretreatment with TAK 242 interfered with the activation of the TLR4 signaling pathway. By detecting the presence of lipopolysaccharides (LPS) in PM2.5 which had been autoclaved, it was speculated that the activation of the TLR4/NF-κB signaling pathway may be mediated by LPS. It was demonstrated using gain- and loss- function experiments that miR-140-5p negatively regulated TLR4 to mediate inflammation in 16HBE cells. The dual-luciferase reporter assay confirmed that miR-140-5p directly binds to the 3' untranslated region (3' UTR) of TLR4 to initiate biological activity. In conclusion, this study revealed a new mechanism by which the miR-140-5p/TLR4 signaling pathway mediated the inflammatory response of 16HBE cells induced by PM2.5. Differential expression of miRNA, and the activation of the TLR4/NF-κB signaling pathway induced by PM2.5 implicates PM2.5 in the pathogenesis of airway inflammation.


Asunto(s)
FN-kappa B/metabolismo , Material Particulado/toxicidad , Células Cultivadas , Polvo , Humanos , Inflamación , Lipopolisacáridos , MicroARNs/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA
18.
J Colloid Interface Sci ; 586: 748-757, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220957

RESUMEN

Fabrication of homojunctions is a cost-effective efficient way to enhance the photocatalytic performance of polymeric carbon nitride (CN), but the generation of defects upon synthesizing CN homojunctions and their roles in the homojunction fabrication were hardly reported. Herein, nitrogen-deficient CN homojunctions were simply synthesized by calcining dicyandiamide-loaded CN (prepared from urea and denoted as UCN) with dicyandiamide polymerizing into CN (denoted as DCN) and simultaneous formation of nitrogen vacancies in the surface of UCN. Fabrication of the nitrogen-deficient UCN (dUCN)/DCN homojunction depends on the nitrogen vacancy content in dUCN which can tune the energy band structure of dUCN from not matching to matching with that of DCN. The dUCN/DCN homojunction exhibits extended optical absorption and remarkably enhanced charge separation and photocatalytic H2 evolution, compared with UCN and DCN. This work illustrates the pivotal role of defects in fabricating CN homojunctions and supplies a new facile way to synthesize nitrogen-deficient CN.

19.
Ecotoxicol Environ Saf ; 206: 111341, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979720

RESUMEN

In this study, a new electrochemical method was used to simultaneously efficient removal of Mn2+ and NH4+-N in wastewater with Cu plate as cathode. The effects of various reaction parameters on the concentrations of Mn2+, NH4+-N and by-products (NO3--N and NO2--N, free chlorine and residual chlorine), as well as the removal mechanism were investigated. The results showed that the removal efficiencies of Mn2+ and NH4+-N were 99.1% and 92.9%, and the concentrations of NO3--N, NO2--N, free chlorine and residue chlorine were 0.73 mg/L, 0.15 mg/L, 0.13 mg/L and 0.63 mg/L reacting for 3 h at room temperature, respectively, when the current density was 10 mA/cm2, the mass ratio of ClO- and Cl- was 1:1, the initial pH was 9. The concentrations of Mn2+, NH4+-N and by-products in wastewater met the integrated wastewater discharge standard (GB8978-1996). In addition, spherical manganese oxide was deposited on the anode plate, and spherical manganese oxide collapsed over electrolysis time. Manganese was mainly removed in the form of MnO, Mn(OH)2 and MnO2. NH4+-N was mainly oxidized to N2. Economic evalution revealed that the treatment cost was 2.93 $/m3.


Asunto(s)
Amoníaco/química , Compuestos de Manganeso/química , Óxidos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Cloro , Cobre/química , Técnicas Electroquímicas , Electrodos , Electrólisis , Manganeso/química , Nitrógeno/análisis , Oxidación-Reducción , Aguas Residuales/química
20.
ACS Appl Mater Interfaces ; 12(33): 37418-37426, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814404

RESUMEN

Reduced graphene oxide (rGO) is considered as one of the ideal sensing materials for high-performance room-temperature gas sensors owing to its large specific surface areas, numerous active sites, and high carrier mobility. However, the sensing performance cannot be maximized due to the inevitable sheet stacking and agglomeration. Herein, we firstdemonstrate multichannel room-temperature gas sensors using magnetic-field-induced alignment of three-dimensional (3D) Fe3O4@SiO2@rGO core-shell spheres. Moreover, the sensing channels composed of spheres can be tailored by changing the concentration of spheres and the magnetic field. Experimental results suggest that the multichannel 3D Fe3O4@SiO2@rGO sensor exhibits an ultrahigh sensitivity of 34.41 with a good response stability and high selectivity toward 5 ppm of NO2 at room temperature, which is ca. 7.96 times higher than that of the random 3D rGO gas sensor. The high performance can be mainly ascribed to a full utilization of their large specific surface area and active sites of rGO nanosheets. We believe that our results not only contribute to the development of high-performance rGO-based sensing devices, but also provide a general approach to maximize the sensing performance of other nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...