Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 79, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475919

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS: Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS: We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION: Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Sulfonamidas , Animales , Humanos , Ratones , Antineoplásicos/uso terapéutico , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/uso terapéutico , Leucemia Mieloide Aguda/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Transcripción CHOP/genética , Respuesta de Proteína Desplegada
2.
Int J Biol Macromol ; 237: 123990, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906205

RESUMEN

This research sought to elucidate the mechanism underlying the self-renewal capacity of leukemic stem cells (LSCs) to offer new insights into the treatment of acute myeloid leukemia (AML). The expression of HOXB-AS3 and YTHDC1 in the AML samples was screened and verified in THP-1 cells and LSCs. The relationship between HOXB-AS3 and YTHDC1 was determined. HOXB-AS3 and YTHDC1 were knocked down through cell transduction to examine the effect of HOXB-AS3 and YTHDC1 on LSCs isolated from THP-1 cells. Tumor formation in mice was used to verify fore experiments. HOXB-AS3 and YTHDC1 were robustly induced in AML, in correlation with adverse prognosis in patients with AML. We found YTHDC1 bound HOXB-AS3 and regulated its expression. Overexpression of YTHDC1 or HOXB-AS3 promoted the proliferation of THP-1 cells and LSCs and impaired their apoptosis, increasing the number of LSCs in the blood and bone marrow of AML mice. YTHDC1 could upregulate the expression of HOXB-AS3 spliceosome NR_033205.1 via the m6A modification of HOXB-AS3 precursor RNA. By this mechanism, YTHDC1 accelerated the self-renewal of LSCs and the subsequent AML progression. This study identifies a crucial role for YTHDC1 in the regulation of LSC self-renewal in AML and suggests a new perspective for AML treatment.


Asunto(s)
Empalme Alternativo , Leucemia Mieloide Aguda , ARN Largo no Codificante , Animales , Ratones , Médula Ósea/metabolismo , Proliferación Celular/genética , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...