Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 323: 121268, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780975

RESUMEN

Understanding the spatial distribution and characteristics of microplastics (MPs) in lake waters is essential to assessing and addressing lacustrine MP pollution. This study investigated how lake ice affects the abundance, spatial distribution, and characteristics (size, shape) of MPs in Lake Ulansuhai by analyzing samples collected at ten sites uniformly distributed throughout the lake during ice-free and ice-covered periods. The abundance of MPs ranged between 204 ± 28 and 1224 ± 185 n·L-1 in lake waters during the ice-free period, and from 34 ± 8 to 216 ± 21 n·L-1 and 269 ± 84 to 915 ± 117 n·L-1 in water and ice during the ice-covered period, respectively. During the ice-covered period, MPs were 2.74-8.14 times higher in the ice than in water beneath the ice. Ice formation decreased MP abundance in lake waters, in part, by incorporating a relatively high percentage of MPs into the ice mass during freezing and by inhibiting atmospheric MPs from reaching the lake waters. The abundance of MPs in the water during the ice-free period was 4.50-11.30 times greater than during the ice-covered period. Seasonal variations in MP shape also occurred; the proportion of fibrous MPs in water decreased during the ice-covered period. Variations in MP abundance were partly due to differences in sedimentation rates; the settling of fibrous MPs is slower, making it easier for them to be captured during the formation of surface ice. Spatially, MPs were uniformly distributed during the ice-free period, but exhibited a spatially distinct pattern during ice-covered periods, when MPs in lake waters were higher in the northeast and lower in the southwest portions of the lake. During the ice-free period, small MPs (0.05-0.5 mm) were more likely to move with currents in the lake, whereas water velocities were reduced by ice formation, allowing small MPs to accumulate near the lake inlet.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Lagos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua
2.
Sci Total Environ ; 843: 156883, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35752243

RESUMEN

Microplastics (MPs) in aquatic environments are hard to degrade, easy to transport, and potentially hazardous to biota. Previous studies of MPs in lakes have shown that their deposition is a significant process controlling both their lateral dispersal from a source, and their concentration within the water column. However, the lakebed depositional rates of MPs have predominantly been determined using laboratory experiments and/or through model simulations that may not fully reflect field conditions. In this paper, lacustrine depositional rates in Lake Ulansuhai were documented using an MP trap that allowed for the assessment and quantification of the depositional rates of MPs of differing size, density, and shape at three sampling sites over five different time periods. The results showed that the downward flux for all types of MPs near the lakebed was correlated with wind speed. Higher wind speeds led to the resuspension of greater amounts of MPs in the lakebed sediments and the transport of greater amounts of MPs from the lake inlet to the lake interior and outlet along the hydrologic flow directions. Consequently, higher wind speeds increased the abundance of MPs at the sediment-water interface and intensified the vertical mixing of MPs in the lake water, resulting in a higher depositional flux of MPs. Particles of differing size, shape, and density exhibited different depositional rates. In general, fragmentary, larger size, and higher density MPs were more likely to be deposited. Thus, size and shape have a strong effect on the migration and deposition of HDMPs in Lake Ulansuhai.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Lagos , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 52(22): 13343-13350, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30358987

RESUMEN

Constructed wetlands provide cost-efficient nutrient removal, with minimal input of human labor and energy, and their number is globally increasing. However, in northern latitudes, wetlands are rarely utilized, because their nutrient removal efficiency has been questioned due to the cold climate. Here, we studied nutrient retention and nitrogen removal in a boreal constructed wetland (4-ha) receiving treated nitrogen-rich wastewater. On a yearly basis, most of the inorganic nutrients were retained by the wetland. The highest retention efficiency was found during the ice-free period, being 79% for ammonium-nitrogen (NH4+-N), 71% for nitrate-nitrogen (NO3--N), and 88% for phosphate-phosphorus (PO43--P). Wetland also acted as a buffer zone during the disturbed nitrification process of the wastewater treatment plant. Denitrification varied between 106 and 252 mg N m-2 d-1 during the ice-free period. During the ice-cover period, total gaseous nitrogen removal was 147 mg N m-2 d-1, from which 66% was removed as N2, 28.5% as N2O through denitrification, and 5.5% as N2 through anammox. Nearly 2600 kg N y-1 was estimated to be removed through microbial gaseous N-production which equaled 72% of NO3--N and 60% of TN yearly retention in the wetland. The wetland retained nutrients even in winter, when good oxygen conditions prevailed under ice. The results suggest that constructed wetlands are an efficient option for wastewater nitrogen removal and nutrient retention also in cold climates.


Asunto(s)
Aguas Residuales , Humedales , Clima Frío , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos
4.
Glob Chang Biol ; 19(12): 3607-20, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23893508

RESUMEN

Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land-use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well-determined subcatchments (total size 174.5 km(2)), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land-use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m(-2) (catchment) yr(-1), which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m(-2) yr(-1)); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m(-2) yr(-1)). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m(-2) yr(-1) and 0.1 ± 0.04 g C m(-2) yr(-1), respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.


Asunto(s)
Agricultura , Contaminantes Atmosféricos/análisis , Ciclo del Carbono , Ríos/química , Carbono/análisis , Dióxido de Carbono/análisis , Ecosistema , Finlandia , Metano/análisis , Estaciones del Año , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...