Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20704, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456592

RESUMEN

Tillage erosion is a widely underestimated process initiating soil degradation especially in case of large agricultural fields located in rolling topography. It is often assumed that, conservation, non-inversion tillage causes less tillage erosion than conventional inversion tillage. In this study, tillage erosion was determined on three paired plots comparing non-inversion chisel versus inversion mouldboard tillage. The experiments were performed at three sites in Northeast Germany with gentle, moderate, and steep slope, while tillage depth (0.25 m) and speed (≈ 6 km h-1) were kept constant during all experiments. The results indicate that non-inversion tillage produces significantly more soil movement compared to inversion tillage. The soil translocation distance was by a factor of 1.3-2.1 larger in case of chisel tillage. The largest difference in translocation distance and tillage transport coefficient (ktil) was found on the gentle slope exhibiting the lowest soil cohesion. Our results together with an evaluation of ktil values derived from literature and standardised for 0.25 m tillage depth contradict the general assumption that non-inversion tillage reduces tillage erosion. In tillage erosion dominated areas, non-inversion tillage applied with high tillage speed and depth potentially increases tillage erosion and fails its purpose to serve as soil conservation measure.


Asunto(s)
Movimiento , Suelo , Humanos , Alemania , Translocación Genética
2.
Sci Rep ; 7(1): 17065, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29213050

RESUMEN

Uniaxial-stress experiments have been performed for the 3287- and 2445-cm-1 local vibrational modes assigned to the positive charge state of interstitial hydrogen [Formula: see text] and deuterium [Formula: see text], respectively, occurring in mono-crystalline rutile TiO2. The onset of the defect alignment under the stress applied perpendicular to the [001] axis is detected at 165 K (185 K), which corresponds to the activation energy of 0.53 eV (0.58 eV) for interstitial hydrogen (deuterium). Based on these findings the diffusion constants of [Formula: see text] and [Formula: see text] along the [001] axis of TiO2 are determined. The experimental data are complemented by density-functional theory calculations and compared with the earlier results on the diffusion of [Formula: see text]/[Formula: see text] at elevated temperatures up to 700 °C. It is found that the activation energy value deduced from our low-temperature stress measurements yields a very good agreement with the high-temperature data, covering a dynamic range of 12 orders of magnitude.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...