Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glia ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215540

RESUMEN

Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2-null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2-associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.

2.
Pediatr Res ; 96(3): 558-559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38649725
3.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562812

RESUMEN

Schwann cells are critical for the proper development and function of the peripheral nervous system, where they form a mutually beneficial relationship with axons. Past studies have highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long-term myelin maintenance and axon health, they may also be present at the Schwann cell-axon interface during development. Here, we expand on this work, showing that drug-mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell-specific ablation of prohibitin 2 (Phb2) in vivo results in early and severe defects in peripheral nerve development. Using a proteomic approach in vitro, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on the presence of axonal signals. Furthermore, we show in vivo that loss of Phb2 in mouse Schwann cells causes ineffective proliferation and dysregulation of transcription factors EGR2 (KROX20), POU3F1 (OCT6) and POU3F2 (BRN2) that are necessary for proper Schwann cell maturation. Schwann cell-specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the development defect seen in mice lacking Schwann cell Phb2. This work develops our understanding of Schwann cell biology, revealing that Phb2 may directly or indirectly modulate the timely expression of transcription factors necessary for proper peripheral nervous system development, and proposing candidates that may play a role in PHB2-mediated integration of axon signals in the Schwann cell.

4.
iScience ; 26(11): 108303, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026169

RESUMEN

Neuroblastoma is the most common extracranial solid tumor in children. MYCN amplification is detected in almost half of high-risk cases and is associated with poorly differentiated tumors, poor patient prognosis and poor response to therapy, including retinoids. We identify the aryl hydrocarbon receptor (AhR) as a transcription factor promoting the growth and suppressing the differentiation of MYCN-amplified neuroblastoma. A neuroblastoma specific AhR transcriptional signature reveals an inverse correlation of AhR activity with patients' outcome, suggesting AhR activity is critical for disease progression. AhR modulates chromatin structures, reducing accessibility to regions responsive to retinoic acid. Genetic and pharmacological inhibition of AhR results in induction of differentiation. Importantly, AhR antagonism with clofazimine synergizes with retinoic acid in inducing differentiation both in vitro and in vivo. Thus, we propose AhR as a target for MYCN-amplified neuroblastoma and that its antagonism, combined with current standard-of-care, may result in a more durable response in patients.

5.
Exp Mol Med ; 55(7): 1380-1387, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37464092

RESUMEN

The close relationship between primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) provides a good opportunity to comprehend the gut-liver axis. The gut and the liver have reciprocal interactions, including how gut inflammation influences the liver through immune cells and the microbiota and how the microbiota in the gut modifies bile acids, which are produced and secreted from the liver. PSC-IBD shows distinct clinical findings from classical IBD. In addition, a distinct genetic predisposition and unique microbiota composition suggest that PSC-IBD is an independent disease entity. Understanding the pathogenesis of PSC-IBD helps to develop novel and effective therapeutic agents. Given the high risk of malignancies associated with PSC-IBD, it is critical to identify patients at high risk and implement appropriate surveillance and monitoring strategies. In this review, we provide an overview of PSC-IBD, which exemplifies the gut-liver axis.


Asunto(s)
Colangitis Esclerosante , Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Colangitis Esclerosante/complicaciones , Colangitis Esclerosante/patología , Enfermedades Inflamatorias del Intestino/etiología , Hígado/patología , Inflamación/complicaciones
6.
Intest Res ; 21(4): 420-432, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37519211

RESUMEN

Primary sclerosing cholangitis (PSC) is a progressive cholestatic, inflammatory, and fibrotic disease that is strongly associated with inflammatory bowel disease (IBD). PSC-IBD represents a unique disease entity and patients with this disease have an increased risk of malignancy development, such as colorectal cancer and cholangiocarcinoma. The pathogenesis of PSC-IBD involves genetic and environmental factors such as gut dysbiosis and bile acids alteration. However, despite the advancement of disease characteristics, no effective medical therapy has proven to have a significant impact on the prognosis of PSC. The treatment options for patients with PSC-IBD do not differ from those for patients with PSC alone. Potential candidate drugs have been developed based on the pathogenesis of PSC-IBD, such as those that target modulation of bile acids, inflammation, fibrosis, and gut dysbiosis. In this review, we summarize the current medical treatments for PSC-IBD and the status of new emerging therapeutic agents.

7.
Transl Psychiatry ; 13(1): 22, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693858

RESUMEN

Loss-of-function mutations of the gene Cul3 have been identified as a risk factor for autism-spectrum disorder (ASD), but the pathogenic mechanisms are not well understood. Conditional Cul3 ablation in cholinergic neurons of mice (ChatCRECul3F/+) recapitulated ASD-like social and sensory gating phenotypes and caused significant cognitive impairments, with diminished activity of cholinergic neurons in the basal forebrain (BF). Chemogenetic inhibition of BF cholinergic neurons in healthy mice induced similar social and cognitive deficits. Conversely, chemogenetic stimulation of BF cholinergic neurons in ChatCRECul3F/+ mice reversed abnormalities in sensory gating and cognition. Cortical hypofunction was also found after ChAT-specific Cul3 ablation and stimulation of cholinergic projections from the BF to the prefrontal cortex (PFC) mitigated cognitive deficits. Overall, we demonstrate that cholinergic dysfunction due to Cul3 deficiency is involved in ASD-like behavioral abnormalities, and that BF cholinergic neurons are particularly critical for cognitive component through their projections to the PFC.


Asunto(s)
Prosencéfalo Basal , Neuronas Colinérgicas , Disfunción Cognitiva , Proteínas Cullin , Corteza Prefrontal , Animales , Ratones , Prosencéfalo Basal/metabolismo , Colinérgicos , Neuronas Colinérgicas/metabolismo , Cognición/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Corteza Prefrontal/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo
8.
Am J Pathol ; 193(2): 148-160, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336065

RESUMEN

Although rare compared with adult liver cancers, hepatoblastoma (HB) is the most common pediatric liver malignancy, and its incidence is increasing. Currently, the treatment includes surgical resection with or without chemotherapy, and in severe cases, liver transplantation in children. The effort to develop more targeted, HB-specific therapies has been stymied by the lack of fundamental knowledge about HB biology. Heat shock factor 1 (HSF1), a transcription factor, is a canonical inducer of heat shock proteins, which act as chaperone proteins to prevent or undo protein misfolding. Recent work has shown a role for HSF1 in cancer beyond the canonical heat shock response. The current study found increased HSF1 signaling in HB versus normal liver. It showed that less differentiated, more embryonic tumors had higher levels of HSF1 than more differentiated, more fetal-appearing tumors. Most strikingly, HSF1 expression levels correlated with mortality. This study used a mouse model of HB to test the effect of inhibiting HSF1 early in tumor development on cancer growth. HSF1 inhibition resulted in fewer and smaller tumors, suggesting HSF1 is needed for aggressive tumor growth. Moreover, HSF1 inhibition also increased apoptosis in tumor foci. These data suggest that HSF1 may be a viable pharmacologic target for HB treatment.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico , Apoptosis , Respuesta al Choque Térmico
9.
PLoS Genet ; 18(11): e1010477, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350884

RESUMEN

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Ratones , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Axones/metabolismo , Neuroglía , Ratones Noqueados , Modelos Animales de Enfermedad , Comunicación
10.
Cell Chem Biol ; 29(6): 970-984.e6, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35148834

RESUMEN

Signal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.


Asunto(s)
Melanoma , Receptor EphA4/metabolismo , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Melanoma/metabolismo , Nucleótidos/metabolismo , Fosforilación
12.
Elife ; 102021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609282

RESUMEN

Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of ß-catenin, one with ß-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived ß-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of ß-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of ß-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or ß-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel ß-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF.


The liver has an incredible capacity to repair itself or 'regenerate' ­ that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called 'ductular reaction', which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called ß-catenin ­ which can cause many types of cells to proliferate ­ is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce ß-catenin in biliary duct cells, while the other lacked ß-catenin both in biliary duct cells and in hepatocytes. After a short liver injury ­ which Hu et al. caused by feeding the mice a specific diet ­ the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked ß-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking ß-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that ß-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of ß-catenin in ductular reaction. Further, the results show a previously unknown interaction between ß-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis/genética , Inflamación/genética , FN-kappa B/genética , beta Catenina/genética , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Fibrosis/inmunología , Inflamación/inmunología , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , beta Catenina/metabolismo
13.
Nat Commun ; 12(1): 6091, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667203

RESUMEN

Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Guanosina Trifosfato/química , Células HEK293 , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Cinética , Unión Proteica , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética
14.
Elife ; 102021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519641

RESUMEN

Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Represoras/genética , Células de Schwann/metabolismo , Animales , Enfermedades Desmielinizantes/patología , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Prohibitinas , Células de Schwann/enzimología , Regulación hacia Arriba
15.
Nat Commun ; 12(1): 3285, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078899

RESUMEN

In peripheral nerves, Schwann cells form myelin and provide trophic support to axons. We previously showed that the mitochondrial protein prohibitin 2 can localize to the axon-Schwann-cell interface and is required for developmental myelination. Whether the homologous protein prohibitin 1 has a similar role, and whether prohibitins also play important roles in Schwann cell mitochondria is unknown. Here, we show that deletion of prohibitin 1 in Schwann cells minimally perturbs development, but later triggers a severe demyelinating peripheral neuropathy. Moreover, mitochondria are heavily affected by ablation of prohibitin 1 and demyelination occurs preferentially in cells with apparent mitochondrial loss. Furthermore, in response to mitochondrial damage, Schwann cells trigger the integrated stress response, but, contrary to what was previously suggested, this response is not detrimental in this context. These results identify a role for prohibitin 1 in myelin integrity and advance our understanding about the Schwann cell response to mitochondrial damage.


Asunto(s)
Nervio Femoral/metabolismo , Mitocondrias/metabolismo , Proteínas Represoras/genética , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Nervio Tibial/metabolismo , Animales , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Axones/metabolismo , Axones/ultraestructura , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Nervio Femoral/patología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Prohibitinas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/deficiencia , Células de Schwann/patología , Nervio Ciático/patología , Estrés Fisiológico , Nervio Tibial/patología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , gamma-Glutamilciclotransferasa/genética , gamma-Glutamilciclotransferasa/metabolismo
16.
Neurosci Lett ; 753: 135868, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33812927

RESUMEN

Small Rho GTPases such as Cdc42 and Rac1 regulate peripheral myelination during development. Deletion of Rac1 in Schwann cell conditional knockout mice causes a delay in the process of radial sorting, followed by hypomyelination as well as defective PAK1 activation and high number of immature Oct6+ Schwann cells. Rac3 has been shown to have redundant, specific and even opposite functions to Rac1 depending on the cell type, age and other factors. In neuronal cells, evidence suggests that Rac3 may oppose Rac1 by disrupting PAK1-GIT1-Paxillin signaling thus preventing cell differentiation and extension of lamellipodia. Therefore, we tested if these Rho GTPases have similar or opposite functions in Schwann cells, by deleting the genes for both proteins in mice during peripheral myelination. At P30, global deletion of Rac3 alleviates the developmental defects on axonal sorting and hypomyelination that are caused by Schwann cell conditional ablation of Rac1. Moreover, Rac3 deletion also reverses the arrest of Schwann cells at the Oct6+ stage and ameliorates the defects in PAK1 phosphorylation observed in Rac1 deficient mice. This partial rescue of the phenotype declines later on with aging. Since double transgenic animals showed dysmyelination without axonal degeneration at P60, we postulate that this deterioration is not likely due to loss of Rac3 in neurons, but it seems to be a Schwann cell-specific defect in the maintenance of myelin.


Asunto(s)
Vaina de Mielina/metabolismo , Neuropéptidos/metabolismo , Células de Schwann/fisiología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Axones/metabolismo , Diferenciación Celular , Ratones , Ratones Noqueados , Neuropéptidos/genética , Fosforilación , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/genética
17.
J Neurosci ; 41(10): 2245-2263, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33472827

RESUMEN

The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.


Asunto(s)
Enfermedades Autoinmunes Desmielinizantes SNC/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Interferón gamma/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados
18.
Glia ; 69(1): 91-108, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744761

RESUMEN

In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners ß3 or ß8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.


Asunto(s)
Células de Schwann , Animales , Axones , Integrina alfaV , Integrinas , Ratones , Oligopéptidos
20.
J Extracell Vesicles ; 9(1): 1692401, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31807236

RESUMEN

Both exosomes and soluble factors have been implicated in the generation of an immunosuppressive tumour microenvironment. Determining the contribution of each requires stringent control of purity of the isolated analytes. The present study compares several conventional exosome isolation methods for the presence of co-enriched soluble factors while isolating exosomes from human melanoma-derived cell lines. The resultant preparations were analysed by multiplex bead array analysis for cytokine profiles, and by electron microscopy and nanotracking analysis for exosome size distribution and concentration. It is demonstrated that the amount and repertoire of soluble factors in exosome preparations is dependent upon the isolation method used. A combination of ultrafiltration and size exclusion chromatography yielded up to 58-fold more exosomes than ultracentrifugation, up to 836-fold lower concentrations of co-purified soluble factors when adjusted for exosome yield, and a greater than two-fold increase in PD-L1 expressing exosomes. Mechanistically, in context of the immunomodulatory effects of exosomes, the exosome isolation method should be carefully considered in order to limit any effects due instead to co-eluted soluble factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...