Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(9): e0238518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32870930

RESUMEN

Changing institutional culture to be more diverse and inclusive within the biomedical academic community is difficult for many reasons. Herein we present evidence that a collaborative model involving multiple institutions of higher education can initiate and execute individual institutional change directed at enhancing diversity and inclusion at the postdoctoral researcher (postdoc) and junior faculty level by implementing evidence-based mentoring practices. A higher education consortium, the Big Ten Academic Alliance, invited individual member institutions to send participants to one of two types of annual mentor training: 1) "Mentoring-Up" training for postdocs, a majority of whom were from underrepresented groups; 2) Mentor Facilitator training-a train-the-trainer model-for faculty and senior leadership. From 2016 to 2019, 102 postdocs and 160 senior faculty and administrative leaders participated. Postdocs reported improvements in their mentoring proficiency (87%) and improved relationships with their PIs (71%). 29% of postdoc respondents transitioned to faculty positions, and 85% of these were underrepresented and 75% were female. 59 out of the 120 faculty and administrators (49%) trained in the first three years provided mentor training on their campuses to over 3000 undergraduate and graduate students, postdocs and faculty within the project period. We conclude that early stage biomedical professionals as well as individual institutions of higher education benefited significantly from this collaborative mentee/mentor training model.


Asunto(s)
Movilidad Laboral , Tutoría , Mentores , Investigadores , Investigación Biomédica/educación , Diversidad Cultural , Femenino , Humanos , Masculino , Tutoría/métodos , Mentores/educación , Investigadores/educación , Estudiantes
2.
PLoS Biol ; 16(1): e2003698, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337984

RESUMEN

The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in suppression of anterior fates and promotion of mid-axial fates, but we find no evidence that cWnt signaling plays a role in the early specification of the most posterior axial fates in S. kowalevskii. This posterior autonomy may be a conserved feature of early deuterostome axis specification.


Asunto(s)
Linaje de la Célula/fisiología , Desarrollo Embrionario/fisiología , Vía de Señalización Wnt/fisiología , Animales , Transporte Biológico , Tipificación del Cuerpo/fisiología , Ectodermo , Receptores Frizzled/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Homeobox , Homeostasis , Planarias , Poliquetos/embriología , Poliquetos/fisiología
3.
Evol Dev ; 9(6): 540-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17976051

RESUMEN

Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.


Asunto(s)
Peces/genética , Proteínas de Homeodominio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Duplicación de Gen , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
Proc Biol Sci ; 274(1609): 489-98, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17476768

RESUMEN

The Actinopterygii (ray-finned fishes) is the largest and most diverse vertebrate group, but little is agreed about the timing of its early evolution. Estimates using mitochondrial genomic data suggest that the major actinopterygian clades are much older than divergence dates implied by fossils. Here, the timing of the evolutionary origins of these clades is reinvestigated using morphological, and nuclear and mitochondrial genetic data. Results indicate that existing fossil-based estimates of the age of the crown-group Neopterygii, including the teleosts, Lepisosteus (gar) and Amia (bowfin), are at least 40 Myr too young. We present new palaeontological evidence that the neopterygian crown radiation is a Palaeozoic event, and demonstrate that conflicts between molecular and morphological data for the age of the Neopterygii result, in part, from missing fossil data. Although our molecular data also provide an older age estimate for the teleost crown, this range extension remains unsupported by the fossil evidence. Nuclear data from all relevant clades are used to demonstrate that the actinopterygian whole-genome duplication event is teleost-specific. While the date estimate of this event overlaps the probable range of the teleost stem group, a correlation between the genome duplication and the large-scale pattern of actinopterygian phylogeny remains elusive.


Asunto(s)
Evolución Biológica , Peces/clasificación , Animales , Teorema de Bayes , ADN Mitocondrial/clasificación , Peces/anatomía & histología , Peces/genética , Fósiles , Genoma , Filogenia , Factores de Tiempo
5.
Dev Genes Evol ; 215(8): 402-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15834584

RESUMEN

Hypercephaly, in the form of lateral extensions of the head capsule, is observed in several families of Diptera. A particularly exaggerated form is found in Diopsid stalk-eyed flies, in which both eyes and antennae are laterally displaced at the end of stalks. The processes of early development and specification of the head capsule in stalk-eyed flies are similar to those in Drosophila melanogaster. In Drosophila the homeobox gene ocelliless (oc) shows a mediolateral gradient of expression across the region of the eye-antennal imaginal disc that gives rise to the head capsule and specifies the development of different head structures. The genes and developmental mechanisms that subsequently define head shape in Drosophila and produce hypercephaly in stalk-eyed flies remain unclear. To address this, we performed an enhancer trap screen for Drosophila genes expressed in the same region as oc and identified the homeobox gene defective proventriculus (dve). In the eye-antennal imaginal disc, dve is coexpressed with oc in the region that gives rise to the head capsule and is active along the medial edge of the antennal disc and in the first antennal segment. Analyses of dve expression in mutant eye-antennal discs are consistent with it acting downstream of oc in the development of the head capsule. We confirm that orthologues of dve are present in a diverse panel of five stalk-eyed fly species and analyse patterns of dve sequence variation within the clade. Our results indicate that dve expression and sequence are both highly conserved in stalk-eyed flies.


Asunto(s)
Dípteros/embriología , Drosophila/genética , Ojo/embriología , Genes Homeobox , Genes de Insecto , Cabeza/embriología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Secuencia Conservada , Dípteros/genética , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/embriología , Datos de Secuencia Molecular , Morfogénesis , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Homología de Secuencia de Aminoácido , Proteína Wnt1
6.
Dev Genes Evol ; 212(1): 38-42, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11875655

RESUMEN

Hypercephaly, in the form of lateral extensions of the head capsule, is observed in several families of Diptera. A particularly extreme form is found in diopsid stalk-eyed flies, in which both eyes and antennae are laterally displaced at the end of eyestalks. We have studied the developmental basis of this exaggerated morphology in Cyrtodiopsis dalmanni. Diopsid eye-antennal imaginal discs are divided into anterior and posterior portions, which are joined by a narrow "disc-stalk" of intervening tissue. We established a fate map for this disc by cutting it into fragments and culturing them in vivo by injecting them into host larvae. The adult eye and dorsal head capsule structures, including the eyestalk and the ocelli, are derived from the posterior portion of the disc, while ventral adult structures such as the antenna and the palpus are derived from the anterior portion of the disc. Thus both posterior and anterior disc portions give rise to structures that are widely separated in the adult head. Moreover, structures that are adjacent in the adult are derived from different regions of the disc. These results confirm and extend previous conclusions about regional identity in diopsid eye-antennal discs that were based on the analysis of molecular markers.


Asunto(s)
Dípteros/embriología , Ojo/embriología , Animales , Células Cultivadas , Embrión no Mamífero/embriología , Cabeza/anatomía & histología , Cabeza/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...