Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 181(2): 219-222, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302564

RESUMEN

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Asunto(s)
Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Humanos , Neurociencias
2.
PLoS One ; 9(12): e115144, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25502225

RESUMEN

Recent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT) acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Glutaminasa/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Estrés Oxidativo/efectos de los fármacos , Sulfuros/farmacología , Tiadiazoles/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Estudios de Asociación Genética , Glutaminasa/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Terapia Molecular Dirigida
3.
Annu Rev Med ; 65: 157-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24422570

RESUMEN

Therapeutic strategies designed to target cancer metabolism are an area of intense research. Antimetabolites, first used to treat patients in the early twentieth century, served as an early proof of concept for such therapies. We highlight strategies that attempt to improve on the anti-metabolite approach as well as new metabolic drug targets. Some of these targets have the advantage of a strong genetic anchor to drive patient selection (isocitrate dehydrogenase 1/2, Enolase 2). Additional approaches described here derive from hypothesis-driven and systems biology efforts designed to exploit tumor cell metabolic dependencies (fatty acid oxidation, nicotinamide adenine dinucleotide synthesis, glutamine biology).


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética , Ácidos Grasos/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Metotrexato/uso terapéutico , NAD/metabolismo , Neoplasias/genética , Fosfopiruvato Hidratasa/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
4.
Cell ; 155(4): 844-57, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209622

RESUMEN

Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or ß (PI5P4Kα and ß) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and ß in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K ß and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Senescencia Celular , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Genes Letales , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
5.
Biochemistry ; 50(50): 10764-70, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22049910

RESUMEN

Glutaminase (GLS1/2) catalyzes the conversion of L-glutamine to L-glutamate and ammonia. The level of a splice variant of GLS1 (GAC) is elevated in certain cancers, and GAC is specifically inhibited by bis-2-(5-phenylacetimido-1,2,4,thiadiazol-2-yl)ethyl sulfide (BPTES). We report here the first full-length crystal structure of GAC in the presence and absence of BPTES molecules. Two BPTES molecules bind at an interface region of the GAC tetramer in a manner that appears to lock the GAC tetramer into a nonproductive conformation. The importance of these loops with regard to overall enzymatic activity of the tetramer was revealed by a series of GAC point mutants designed to create a BPTES resistant GAC.


Asunto(s)
Sitio Alostérico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Bases de Datos de Proteínas , Dimerización , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación Puntual , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Sulfuros/química , Sulfuros/metabolismo , Tiadiazoles/química , Tiadiazoles/metabolismo
6.
Mol Cell Biol ; 30(21): 5043-56, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20733003

RESUMEN

Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.


Asunto(s)
Adiposidad/fisiología , Hígado Graso/prevención & control , Gluconeogénesis/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Adiposidad/genética , Alelos , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Cruzamientos Genéticos , Cartilla de ADN/genética , Grasas de la Dieta/administración & dosificación , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Hígado Graso/enzimología , Hígado Graso/genética , Femenino , Gluconeogénesis/genética , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética , Obesidad/prevención & control , Fenotipo , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Inanición/enzimología , Inanición/genética , Inanición/fisiopatología
7.
Proc Natl Acad Sci U S A ; 104(13): 5680-5, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17372192

RESUMEN

Obesity is a major factor central to the development of insulin resistance and type 2 diabetes. The identification and characterization of genes involved in regulation of adiposity, insulin sensitivity, and glucose uptake are key to the design and development of new drug therapies for this disease. In this study, we show that the polarity kinase Par-1b/MARK2 is required for regulating glucose metabolism in vivo. Mice null for Par-1b were lean, insulin hypersensitive, resistant to high-fat diet-induced weight gain, and hypermetabolic. (18)F-FDG microPET and hyperinsulinemic-euglycemic clamp analyses demonstrated increased glucose uptake into white and brown adipose tissue, but not into skeletal muscle of Par-1b null mice relative to wild-type controls. Taken together, these data indicate that Par-1b is a regulator of glucose metabolism and adiposity in the whole animal and may be a valuable drug target for the treatment of both type 2 diabetes and obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad/genética , Proteínas de Ciclo Celular/fisiología , Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Insulina/metabolismo , Obesidad/genética , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Femenino , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo
8.
Curr Biol ; 14(8): 736-41, 2004 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-15084291

RESUMEN

The establishment and maintenance of cellular polarity are essential biological processes that must be maintained throughout the lifetime of eukaryotic organisms. The Par-1 protein kinases are key polarity determinants that have been conserved throughout evolution. Par-1 directs anterior-posterior asymmetry in the one-cell C. elegans embryo and the Drosophila oocyte. In mammalian cells, Par-1 may regulate epithelial cell polarity. Relevant substrates of Par-1 in these pathways are just being identified, but it is not yet known how Par-1 itself is regulated. Here, we demonstrate that human Par-1b (hPar-1b) interacts with and is negatively regulated by atypical PKC. hPar-1b is phosphorylated by aPKC on threonine 595, a residue conserved in Par-1 orthologs in mammals, worms, and flies. The equivalent site in hPar-1a, T564, is phosphorylated in vivo and by aPKC in vitro. Importantly, phosphorylation of hPar-1b on T595 negatively regulates the kinase activity and plasma membrane localization of hPar-1b in vivo. This study establishes a novel functional link between two central determinants of cellular polarity, aPKC and Par-1, and suggests a model by which aPKC may regulate Par-1 in polarized cells.


Asunto(s)
Polaridad Celular/fisiología , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Treonina/metabolismo , Western Blotting , Electroforesis en Gel de Poliacrilamida , Fluorescencia , Células HeLa , Humanos , Fosfopéptidos/metabolismo , Fosforilación , Plásmidos/genética , Pruebas de Precipitina , Proteína Quinasa C/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Estructura Terciaria de Proteína , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...