Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
BMC Plant Biol ; 24(1): 934, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39379841

RESUMEN

BACKGROUND: Nitric oxide (NO) is pivotal in regulating the activity of NBS-LRR specific R genes, crucial components of the plant's immune system. It is noteworthy that previous research has not included a genome-wide analysis of NO-responsive NBS-LRR genes in plants. RESULTS: The current study examined 29 NO-induced NBS-LRR genes from Arabidopsis thaliana, along with two monocots (rice and maize) and two dicots (soybean and tomato) using genome-wide analysis tools. These NBS-LRR genes were subjected to comprehensive characterization, including analysis of their physio-chemical properties, phylogenetic relationships, domain and motif identification, exon/intron structures, cis-elements, protein-protein interactions, prediction of S-Nitrosylation sites, and comparison of transcriptomic and qRT-PCR data. Results showed the diverse distribution of NBS-LRR genes across chromosomes, and variations in amino acid number, exons/introns, molecular weight, and theoretical isoelectric point, and they were found in various cellular locations like the plasma membrane, cytoplasm, and nucleus. These genes predominantly harbor the NB-ARC superfamily, LRR, LRR_8, and TIR domains, as also confirmed by motif analysis. Additionally, they feature species-specific PLN00113 superfamily and RX-CC_like domain in dicots and monocots, respectively, both responsive to defense against pathogen attacks. The NO-induced NBS-LRR genes of Arabidopsis reveal the presence of cis-elements responsive to phytohormones, light, stress, and growth, suggesting a wide range of responses mediated by NO. Protein-protein interactions, coupled with the prediction of S-Nitrosylation sites, offer valuable insights into the regulatory role of NO at the protein level within each respective species. CONCLUSION: These above findings aimed to provide a thorough understanding of the impact of NO on NBS-LRR genes and their relationships with key plant species.


Asunto(s)
Arabidopsis , Óxido Nítrico , Arabidopsis/genética , Óxido Nítrico/metabolismo , Filogenia , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/genética , Zea mays/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo
2.
Heliyon ; 10(17): e36976, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286149

RESUMEN

Nitric Oxide (NO) regulates important physiological functions. Garlic (Allium sativum) is an important food component consumed fresh and processed for thousands of years. It has high L-arginine, which contributes to the NO system in the body. Both garlic and NO impact important physiological processes. Here we produced brown garlic, with significantly higher nutritional and therapeutic value compared to fresh and black garlic. Lower exhaled NO was recorded in asthmatic mice fed with brown garlic but with higher blood SNOs and no change in eNOS and iNOS expression. Lung biopsy showed reduced eosinophil accumulation in asthmatic mice fed with brown garlic. Real-time PCR and Western blot analyses indicated high expression of antioxidant genes but reduced interleukin genes, IL-4, IL-5, IL-6, IL-13, IL1ß, and TNF-α brown garlic-fed asthmatic mice as compared to that in fresh and black garlic-fed asthmatic mice. This study provides the first comprehensive and conclusive insight into the nutritional benefits of brown garlic and its therapeutic value for the treatment of asthma in animals.

3.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126104

RESUMEN

Melatonin regulates vital physiological processes in animals, such as the circadian cycle, sleep, locomotion, body temperature, food intake, and sexual and immune responses. In plants, melatonin modulates seed germination, longevity, circadian cycle, photoperiodicity, flowering, leaf senescence, postharvest fruit storage, and resistance against biotic and abiotic stresses. In plants, the effect of melatonin is mediated by various regulatory elements of the redox network, including RNS and ROS. Similarly, the radical gas NO mediates various physiological processes, like seed germination, flowering, leaf senescence, and stress responses. The biosynthesis of both melatonin and NO takes place in mitochondria and chloroplasts. Hence, both melatonin and nitric oxide are key signaling molecules governing their biological pathways independently. However, there are instances when these pathways cross each other and the two molecules interact with each other, resulting in the formation of N-nitrosomelatonin or NOMela, which is a nitrosated form of melatonin, discovered recently and with promising roles in plant development. The interaction between NO and melatonin is highly complex, and, although a handful of studies reporting these interactions have been published, the exact molecular mechanisms governing them and the prospects of NOMela as a NO donor have just started to be unraveled. Here, we review NO and melatonin production as well as RNS-melatonin interaction under normal and stressful conditions. Furthermore, for the first time, we provide highly sensitive, ozone-chemiluminescence-based comparative measurements of the nitric oxide content, as well as NO-release kinetics between NOMela and the commonly used NO donors CySNO and GSNO.


Asunto(s)
Melatonina , Óxido Nítrico , Plantas , Melatonina/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Donantes de Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Transducción de Señal , Fenómenos Fisiológicos de las Plantas
4.
PLoS One ; 19(7): e0300572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39018282

RESUMEN

Contaminated air quality, in lieu of massive industrial pollution, is severely attributing to health anomalies in the proximity of industrial units. Cardiovascular Disease (CAD) is rising around industrial units in the planned capital city of Pakistan, Pakistan. To study self-reported CAD in the proximity of Industrial Estate Islamabad (IEI) by equating two distinct study groups as 'Band-I': the residence 0-650 meters and 'Band-II' 650-1300 meters radius around the perimeter of IEI. The perimeters were digitized using Google Earth and GIS. Field survey was conducted on deploying 388 (194 in each Band) close-ended (self-administered) questionnaires at the household level, after adjusting the potential confounding variables. The research calculated odds ratios (ORs) of the CAD at 95% CI. The study's findings of the multiple logistic regression for ORs confirmed a significant increase in CAD problems due to industrial affluents in Band-I than in Band-II which were less severe and less life-threatening. Study confirmed high incidences of high blood pressure and breathing issues (up to 67%), due to accumulation of unhealthy affluents thus leading to heart stroke (Band I = 56.20% and Band II = 60.30%). It is aided by smoking that has increased CAD in Band-I. Societal attributes of knowledge, beliefs, attitudes, and preferences fail to safeguard the local residents amid high concentration of harmful pollutants. As a counter measure the affected respondents engaged in highlighting the issue to the concerned public offices, yet there is a high need on part of the capital government to take mitigative measures to immediately halt the disastrous industrial air emissions to save precious lives.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Pakistán/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Femenino , Masculino , Persona de Mediana Edad , Prevalencia , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Industrias , Encuestas y Cuestionarios , Exposición a Riesgos Ambientales/efectos adversos , Anciano
5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928504

RESUMEN

Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.


Asunto(s)
Melatonina , Desarrollo de la Planta , Melatonina/metabolismo , Antioxidantes/metabolismo , Estrés Fisiológico , Plantas/metabolismo , Ritmo Circadiano/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Pineal Res ; 76(4): e12957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803089

RESUMEN

Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress. We identify the melatonin synthesis pathway (tryptophan→tryptamine→serotonin melatonin) of the halotolerant (NaCl > 800 mM) and heavy metal-resistant (Cd >3 mM) rhizobacterium Bacillus safensis EH143 and use it to treat soybean plants subjected to Cd and NaCl stresses. Results show that EH143 will highly bioaccumulate heavy metals and significantly improve P and Ca2+ uptake and the K+/Na+ (93%↑under salt stress) ratio while reducing Cd uptake (49% under Cd stress) in shoots. This activity was supported by the expression of the ion regulator HKT1, MYPB67, and the calcium sensors CDPK5 and CaMK1 which ultimately led to increased plant growth. EH143 significantly decreased ABA content in shoots by 13%, 20%, and 34% and increased SA biosynthesis in shoots by 14.8%, 31%, and 48.2% in control, salt, and Cd-treated plants, upregulating CYP707A1 and CYP707A2 and PAL1 and ICS, respectively. The melatonin content significantly decreased along with a reduced expression of ASMT3 following treatment with EH143; moreover, reduced expression of peroxidase (POD) and superoxide dismutase (SOD) by 134.5% and 39% under salt+Cd stress, respectively and increased level of total amino acids were observed. Whole-genome sequencing and annotation of EH143 revealed the presence of the melatonin precursor tryptophan synthase (trpA, trpB, trpS), metal and other ion regulators (Cd: cadA, potassium: KtrA and KtrB, phosphate: glpT, calcium: yloB, the sodium/glucose cotransporter: sgIT, and the magnesium transporter: mgtE), and enzyme activators (including the siderophore transport proteins yfiZ and yfhA, the SOD sodA, the catalase katA1, and the glutathione regulator KefG) that may be involved in programming the plant metabolic system. As a consequence, EH143 treatment significantly reduced the contents of lipid peroxidation (O2-, MDA, and H2O2) up to 69%, 46%, and 29% in plants under salt+Cd stress, respectively. These findings suggest that EH143 could be a potent biofertilizer to alleviate NaCl and Cd toxicity in crops and serve as an alternative substitute for exogenous melatonin application.


Asunto(s)
Bacillus , Cadmio , Glycine max , Melatonina , Melatonina/metabolismo , Glycine max/metabolismo , Glycine max/efectos de los fármacos , Glycine max/microbiología , Cadmio/metabolismo , Bacillus/metabolismo , Estrés Salino , Estrés Fisiológico/efectos de los fármacos , Tolerancia a la Sal
7.
Front Plant Sci ; 15: 1341993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439982

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) colonize plant roots, establish a mutualistic relationship with the plants and help them grow better. This study reports novel findings on the plant growth-promoting effects of the PGPR Bacillus aryabhattai. Soil was collected from a soybean field, PGPR were isolated, identified, and characterized for their ability to promote plant growth and development. The bacterium was isolated from the soybean rhizosphere and identified as B. aryabhattai strain SRB02 via 16s rRNA sequencing. As shown by SEM, the bacterium successfully colonized rice and soybean roots within 2 days and significantly promoted the growth of the GA-deficient rice cultivar Waito-C within 10 days, as well as the growth of soybean plants with at least six times longer shoots, roots, higher chlorophyll content, fresh, and dry weight after 10 days of inoculation. ICP analysis showed up to a 100% increase in the quantity of 18 different amino acids in the SRB02-treated soybean plants. Furthermore, the 2-DE gel assay indicated the presence of several differentially expressed proteins in soybean leaves after 24 hrs of SRB02 application. MALDI-TOF-MS identified ß-conglycinin and glycinin along with several other proteins that were traced back to their respective genes. Analysis of bacterial culture filtrates via GCMS recorded significantly higher quantities of butanoic acid which was approximately 42% of all the metabolites found in the filtrates. The application of 100 ppm butanoic acid had significantly positive effects on plant growth via chlorophyll maintenance. These results establish the suitability of B. aryabhattai as a promising PGPR for field application in various crops.

8.
Physiol Plant ; 176(2): e14258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38522952

RESUMEN

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Antioxidantes/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
9.
Biol Trace Elem Res ; 202(12): 5794-5814, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38393486

RESUMEN

Shilajit is a phyto-mineral diffusion and semi-solid matter used as traditional medicine with extraordinary health benefits. This study provides a comprehensive data on Shilajit with emphasis on heavy metal profile, associated toxicities, and metal detoxification mechanisms by humic substances present in Shilajit. Data was searched across papers and traditional books using Google Scholar, PubMed, Science Direct, Medline, SciELO, Web of Science, and Scopus as key scientific databases. Findings showed that Shilajit is distributed in almost 20 regions of the world with uses against 20 health problems as traditional medicine. With various humic substances, almost 11 biological activities were reported in Shilajit. This phyto-mineral diffusion possesses around 65 heavy metals including the toxic heavy metals like Cu, Al, Pb, As, Cd, and Hg. However, humic substances in Shilajit actively detoxify around 12 heavy metals. The recommended levels of heavy metals by WHO and FDA in herbal drugs is 0.20 and 0.30 ppm for Cd, 1 ppm for Hg, 10.00 ppm for As and Pb, 20 ppm for Cu, and 50 ppm for Zn. The levels of reported metals in Shilajit were found to be lower than the permissible limits set by WHO and FDA, except in few studies where exceeded levels were reported. Shilajit consumption without knowing permissible levels of metals is not safe and could pose serious health problems. Although the humic substances and few metals in Shilajit are beneficial in terms of chelating toxic heavy metals, the data on metal detoxification still needs to be clarified.


Asunto(s)
Sustancias Húmicas , Metales Pesados , Metales Pesados/toxicidad , Humanos , Medicina Tradicional , Animales
10.
Biol Trace Elem Res ; 202(4): 1784-1801, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37464170

RESUMEN

Grewia asiatica L. (phalsa) is a very prevalent berry in Pakistan and is consumed extensively as raw or in the form of juice. Here, for the first time, we assessed phalsa from Pakistan in terms of variations in macro and micro minerals, nutrients, and bio-active phyto-constituents including total phenolic and anthocyanin contents at different fruit developmental stages. It was found that the sugars in phalsa increased from D1 (small at the initial fruit setting stage) to D6 development stage (fully ripened fruit) where sugars at D5 (near to fully ripe) and D6 stages were many times greater than at D1, D2 (unripe close to full-size completion), D3 (close to semi ripe), and D4 stage (semi ripened and full-size attainment). Total acidity of was declined in all developmental stages, where the D1 stage displayed maximum and D6 with the lowest acidity. Ascorbic acid was decreased from D1 to D2 and then increased gradually from D3 to D5 stages. At the D6 stage, again a steep decline in ascorbic acid was observed. The total phenolics (mg gallic acid equivalents/100g) at stage D6 were higher (136.02 ± 1.17), whereas D1 being the lowermost in total phenolic content (79.89 ± 1.72). For anthocyanins (mg/100g), an increasing pattern of changes was observed in all stages of phalsa fruit where the D1 stage showed lower (13.97 ± 4.84) anthocyanin contents which then increased gradually at stage D2 (67.79 ± 6.73), but increased sharply at D3 (199.66 ± 4.90), D4 (211.02 ± 18.85), D5 (328.41 ±14.96) and D6 (532.30 ± 8.51) stages. A total of four anthocyanins such as cyanidin, delphidine-3-glucoside, pelargonidin, and malvidin in phalsa were identified using HPLC procedures, and a significant > 90 % DPPH inhibition in phalsa was observed at the D5 and D6 development stages. The macro and micro minerals including Ni, Zn, Fe, Ca, Cu, Mg, Na, P, and K contents were decreased from initial (D1) stage to the final (D6) development stage, while only Fe displayed an increasing trend from the initial to final fruit development stages (D1-D6). Conclusively, these findings could be of great interest for patients who are intended to consume phalsa as adjuvant therapy against diabetes and metabolic syndromes and other diseases involving reactive oxygen species with minimum metal toxicity.


Asunto(s)
Grewia , Oligoelementos , Humanos , Antocianinas/análisis , Frutas/química , Antioxidantes/farmacología , Oligoelementos/análisis , Grewia/química , Fenoles , Minerales/análisis , Ácido Ascórbico , Azúcares
11.
BMC Plant Biol ; 23(1): 639, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082263

RESUMEN

BACKGROUND: Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS: The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 µM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS: This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.


Asunto(s)
Quitosano , Nanopartículas , Sequías , Resistencia a la Sequía , Glycine max/genética , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética
12.
J Genet Eng Biotechnol ; 21(1): 151, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017118

RESUMEN

BACKGROUND: Cellulase is an important bioprocessing enzyme used in various industries. This study was conducted with the aim of improving the biodegradation activity of cellulase obtained from the Bacillus subtilis AG-PQ strain. For this purpose, AgO and FeO NPs were fabricated using AgNO3 and FeSO4·7H2O salt respectively through a hydro-thermal method based on five major steps; selection of research-grade materials, optimization of temperature, pH, centrifuge, sample washed with distilled water, dry completely in the oven at the optimized temperature and finally ground for characterization. The synthesized NPs were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to confirm the morphology, elemental composition, and structure of the sample respectively. The diameter of the NPs was recorded through SEM which lay in the range of 70-95 nm. RESULTS: Cultural parameters were optimized to achieve better cellulase production, where incubation time of 56 h, inoculum size of 5%, 1% coconut cake, 0.43% ammonium nitrate, pH 8, and 37 °C temperature were found optimal. The enhancing effect of AgO NPs was observed on cellulase activity (57.804 U/ml/min) at 50 ppm concentration while FeO NPs exhibited an inhibitory effect on cellulase activity at all concentrations. Molecular docking analysis was also performed to understand the underlying mechanism of improved enzymatic activity by nanocatalysts. CONCLUSION: This study authenticates AgO NPs as better nanocatalysts for improved thermostable cellulase biodegradation activity with the extraordinary capability to be potentially utilized in bioethanol production.

14.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569638

RESUMEN

Aedes aegypti, also known as the dengue mosquito or the yellow fewer mosquito, is the vector of dengue, chikungunya, Zika, Mayaro and yellow fever viruses. The A. aegypti genome contains an array of gustatory receptor (GR) proteins that are related to the recognition of taste. In this study, we performed in silico molecular characterization of all 72 A. aegypti GRs reported in the latest version of A. aegypti genome AaegL5. Phylogenetic analysis classified the receptors into three major clads. Multiple GRs were found to encode multiple transcripts. Physicochemical attributes such as the aliphatic index, hydropathicity index and isoelectric point indicated that A. aegypti gustatory receptors are highly stable and are tailored to perform under a variety of cellular environments. Analysis for subcellular localization indicated that all the GRs are located either in the extracellular matrix or the plasma membrane. Results also indicated that the GRs are distributed mainly on chromosomes 2 and 3, which house 22 and 49 GRs, respectively, whereas chromosome 1 houses only one GR. NCBI-CDD analysis showed the presence of a highly conserved 7tm_7 chemosensory receptor protein superfamily that includes gustatory and odorant receptors from insect species Anopheles gambiae and Drosophila melanogaster. Further, three significantly enriched ungapped motifs in the protein sequence of all 72 A. aegypti gustatory receptors were found. High-quality 3D models for the tertiary structures were predicted with significantly higher confidence, along with ligand-binding residues. Prediction of S-nitrosylation sites indicated the presence of target cysteines in all the GRs with close proximity to the ligand-bindings sites within the 3D structure of the receptors. In addition, two highly conserved motifs inside the GR proteins were discovered that house a tyrosine (Y) and a cysteine (C) residue which may serve as targets for NO-mediated tyrosine nitration and S-nitrosylation, respectively. This study will help devise strategies for functional genomic studies of these important receptor molecules in A. aegypti and other mosquito species through in vitro and in vivo studies.


Asunto(s)
Aedes , Dengue , Proteínas de Drosophila , Infección por el Virus Zika , Virus Zika , Animales , Drosophila melanogaster/genética , Gusto , Aedes/genética , Ligandos , Filogenia , Mosquitos Vectores , Receptores de Superficie Celular/genética , Proteínas de Drosophila/genética
15.
Antioxidants (Basel) ; 12(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37237855

RESUMEN

Nitric oxide (NO) regulates several biological and physiological processes in plants. This study investigated the role of Arabidopsis thaliana Negative Immune and Growth Regulator 1 (AtNIGR1), encoding an NAD(P)-binding Rossmann-fold superfamily, in the growth and immunity of Arabidopsis thaliana. AtNIGR1 was pooled from the CySNO transcriptome as a NO-responsive gene. Seeds of the knockout (atnigr1) and overexpression plants were evaluated for their response to oxidative [(hydrogen peroxide (H2O2) and methyl viologen (MV)] or nitro-oxidative [(S-nitroso-L-cysteine (CySNO) and S-nitroso glutathione (GSNO)] stress. Results showed that the root and shoot growth of atnigr1 (KO) and AtNIGR1 (OE) exhibited differential phenotypic responses under oxidative and nitro-oxidative stress and normal growth conditions. To investigate the role of the target gene in plant immunity, the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000 virulent (Pst DC3000 vir) was used to assess the basal defense, while the Pst DC3000 avirulent (avrB) strain was used to investigate R-gene-mediated resistance and systemic acquired resistance (SAR). Data revealed that AtNIGR1 negatively regulated basal defense, R-gene-mediated resistance, and SAR. Furthermore, the Arabidopsis eFP browser indicated that the expression of AtNIGR1 is detected in several plant organs, with the highest expression observed in germinating seeds. All results put together suggest that AtNIGR1 could be involved in plant growth, as well as basal defense and SAR, in response to bacterial pathogens in Arabidopsis.

16.
Folia Microbiol (Praha) ; 68(6): 867-888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37160524

RESUMEN

Fungi are producers of lignolytic extracellular enzymes which are used in industries like textile, detergents, biorefineries, and paper pulping. This study assessed for the production, purification, and characterization of novel p-diphenol oxidase (PDO; laccase) enzyme from lignolytic white-rot fungal isolate. Fungi samples collected from different areas of Pakistan were initially screened using guaiacol plate method. The maximum PDO producing fungal isolate was identified on the basis of ITS (internal transcribed spacer sequence of DNA of ribosomal RNA) sequencing. To get optimum enzyme yield, various growth and fermentation conditions were optimized. Later PDO was purified using ammonium sulfate precipitation, size exclusion, and anion exchange chromatography and characterized. It was observed that the maximum PDO producing fungal isolate was Schizophyllum commune (MF-O5). Characterization results showed that the purified PDO was a monomeric protein with a molecular mass of 68 kDa and showed stability at lower temperature (30 °C) for 1 h. The Km and Vmax values of the purified PDO recorded were 2.48 mM and 6.20 U/min. Thermal stability results showed that at 30 °C PDO had 119.17 kJ/K/mol Ea value and 33.64 min half-life. The PDO activity was stimulated by Cu2+ ion at 1.0 mM showing enhanced activity up to 111.04%. Strong inhibition effect was noted for Fe2+ ions at 1 mM showing 12.04% activity. The enzyme showed stability against 10 mM concentration oxidizing reducing agents like DMSO, EDTA, H2O2, NaOCl, and urea and retained more than 75% of relative activity. The characterization of purified PDO enzyme confirmed its tolerance against salt, metal ions, organic solvents, and surfactants indicating its ability to be used in the versatile commercial applications.


Asunto(s)
Lacasa , Schizophyllum , Lacasa/metabolismo , Schizophyllum/genética , Schizophyllum/metabolismo , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Temperatura , Estabilidad de Enzimas
17.
Urol Ann ; 15(1): 43-47, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006221

RESUMEN

Purpose: The purpose of this study is to evaluate and assess the effect of intermittent tamsulosin treatment as a trial to increase the drug safety (in terms of reducing the drug side effects, particularly retrograde ejaculation) while maintaining the effect in reducing the symptoms and assess its impact on the patients' quality of life. Materials and Methods: Patients who enrolled in this study were suffering from lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) and were using 0.4 mg tamsulosin daily to relieve their symptoms but complained of ejaculatory problems. A baseline assessment involves medical history and evaluation of ejaculatory function abdominopelvic ultrasound, postvoid residual volume (PVR) estimation, the International Prostate Symptom Score (IPSS), quality of life assessed using global satisfaction, vital signs, physical examination including digital rectal examination, and renal function. During the study, patients consented to take 0.4 mg tamsulosin intermittently every other day and to proceed with their sexual activities on the days they did not take the drug in. Baseline assessment was repeated and recorded after 3 months from starting the treatment. The adverse effects and compliance were analyzed in all patients. Results: Twenty-five patients had a mean baseline IPSS of 6.6 ± 1 and baseline PVR of 87.6 ± 15.1 ml. At the 3rd month, the mean PVR was 100.4 ± 15.1 ml and the mean IPSS was 7.3 ± 1.1. Moreover, 20 out of the total number of 25 patients (80%) reported improvement in their ejaculation. All our 20 patients who showed improvement in their ejaculatory function are either satisfied or very satisfied (4 or 5), in regard to the global satisfaction rate. Conclusion: Intermittent tamsulosin therapy (0.4 mg/every other day) is well-tolerated and shows a potential advantage in recovery in patients who suffer from LUTS/BPH and complaining from abnormal ejaculation, especially absent ejaculate. Although there was a significant change in PVR and IPSS after using intermittent tamsulosin therapy. Most patients show a higher overall satisfaction with the treatment compared to the standard dose (0.4 mg/daily). A study on a larger scale is still needed to confirm our results.

18.
Curr Pharm Biotechnol ; 24(15): 1859-1880, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36974406

RESUMEN

BACKGROUND: Artemisinin is a lactone sesquiterpenoid with an endo-peroxide bridge in the 1, 2, 3-trioxane structure employed for the treatment and management of lethal viral diseases. In the current review, emphasis has been given on the production of artemisinin from natural sources with biosynthesis pathways and potential antiviral activity. METHODS: A wide-ranging inquiry on artemisinin was made electronically on the basis of articles published in peer-reviewed journals, abstracts, published in conference proceedings, government reports, preprints, books, Master's and Ph.D. theses, etc. The research was carried out in different International scientific databases like Academic Search, Biological Abstracts, BIOSIS, BioOne Previews, CabDirect, Cochrane Library, Pubmed/Medline, GeoRef, Google Scholar, JSTOR, Journal Citation Reports, Mendeley, Publons, Researchgate, Scopus, SciELO, Springer Link, Science Direct, Web of Science, Taylor and Francis with particular keywords. RESULTS: The evidence reviewed here indicates that out of the hundreds of species of the genus Artemisia mentioned in the literature, only 37 Artemisia species are reported to possess artemisinin naturally in their extracts with variable concentrations. This review further discusses the biosynthesis pathways and antiviral activities of artemisinin and its derivatives which have been used against more than 12 viral disease categories. CONCLUSION: On the whole, it is concluded that the primary natural sources of artemisinin and its derivatives are the Artemisia plants with antiviral activity, which are essential candidates for drug development against SARS-CoV-2 mainly from those Artemisia species screened for SARS-CoV- 2 infection.


Asunto(s)
Antimaláricos , Artemisia , Artemisininas , COVID-19 , Antimaláricos/metabolismo , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Artemisia/química , Artemisia/metabolismo
19.
Front Med (Lausanne) ; 10: 985444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999068

RESUMEN

Background: Patients admitted to hospital with sepsis are at persistent risk of poor outcome after discharge. Many tools are available to risk-stratify sepsis patients for in-hospital mortality. This study aimed to identify the best risk-stratification tool to prognosticate outcome 180 days after admission via the emergency department (ED) with suspected sepsis. Methods: A retrospective observational cohort study was performed of adult ED patients who were admitted after receiving intravenous antibiotics for the treatment of a suspected sepsis, between 1st March and 31st August 2019. The Risk-stratification of ED suspected Sepsis (REDS) score, SOFA score, Red-flag sepsis criteria met, NICE high-risk criteria met, the NEWS2 score and the SIRS criteria, were calculated for each patient. Death and survival at 180 days were noted. Patients were stratified in to high and low-risk groups as per accepted criteria for each risk-stratification tool. Kaplan-Meier curves were plotted for each tool and the log-rank test performed. The tools were compared using Cox-proportional hazard regression (CPHR). The tools were studied further in those without the following specified co-morbidities: Dementia, malignancy, Rockwood Frailty score of 6 or more, long-term oxygen therapy and previous do-not-resuscitate orders. Results: Of the 1,057 patients studied 146 (13.8%) died at hospital discharge and 284 were known to have died within 180 days. Overall survival proportion was 74.4% at 180 days and 8.6% of the population was censored before 180 days. Only the REDS and SOFA scores identified less than 50% of the population as high-risk. All tools except the SIRS criteria, prognosticated for outcome at 180 days; Log-rank tests between high and low-risk groups were: REDS score p < 0.0001, SOFA score p < 0.0001, Red-flag criteria p = 0.001, NICE high-risk criteria p = 0.0001, NEWS2 score p = 0.003 and SIRS criteria p = 0.98. On CPHR, the REDS [Hazard ratio (HR) 2.54 (1.92-3.35)] and SOFA [HR 1.58 (1.24-2.03)] scores out-performed the other risk-stratification tools. In patients without the specified co-morbidities, only the REDS score and the SOFA score risk-stratified for outcome at 180 days. Conclusion: In this study, all the risk-stratification tools studied were found to prognosticate for outcome at 180 days, except the SIRS criteria. The REDS and SOFA scores outperformed the other tools.

20.
Biol Trace Elem Res ; 201(8): 4143-4155, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36355264

RESUMEN

Diversity in eleven Artemisia species from northern Pakistan was assessed based on as per suitability of their elemental contents with thermal conductivity detection and ICP-AES procedures. Results indicated the presence of 13 major elements in the Artemisia species with varied concentrations including Carbon (45.7%, 45,7000 ppm-49.8%, 49,8000 ppm), Nitrogen (2.03%, 20,300 ppm-3.50%, 35,000 ppm), Phosphorus (0.168%, 1680 ppm-0.642%, 6420 ppm), Potassium (2.38%, 23,800 ppm-4.72%, 47,200 ppm), Sulphur (1920 ppm, 0.192%-4780 ppm, 0.478%), Boron (23.8 ppm, 0.00238%-71.7 ppm, 0.00717%), Calcium (0.733%, 7330 ppm-2.249%, 22,490 ppm), Magnesium (0.116%, 1160 ppm-0.267%, 2670 ppm), Zinc (27.7 ppm, 0.00277%-47.9 ppm, 0.00479%), Manganese (25.7 ppm, 0.00257%-93.8 ppm, 0.00938%), Iron (353 ppm, 0.0353%-1532 ppm, 0.1532%), Copper (14.1 ppm, 0.00141%-26.2 ppm, 0.00262%) and Sodium (105 ppm, 0.0105%-587 ppm, 0.0587%). Cluster analysis distributed the Artemisia species into two major groups (G1 and G2) on the basis of their elemental content where G1 contained species like, Artemisia herba alba Asso., A. tournefortiana Rachb., A. rutifolia Steph. ex Spreng., and A. vulgaris L., with the presence of all elements with the maximum amount of S, Zn, P, Ca, and Mg, while G2 contained species like Artemisia biennis Willd., A. chamaemelifolia Vill., A. capillaris, L., A. gmelinii Weber ex Stech., A. indica Willd., A. maritima L., and A. verlotiorum Lamotte., with all elements but significant concentrations of B, N, C, K, Mn, Fe, Cu, and Na. PCA analysis displayed maximum species diversity in the axes two, while axes one showed lower diversity. Additionally, the elevated levels of elements recorded as compared to the threshold levels recommended in the literature for medicinal plants require extraordinary precautionary measures before or during using Artemisia as medication to avoid metal toxicity.


Asunto(s)
Artemisia , Oligoelementos , Espectrofotometría Atómica/métodos , Pakistán , Cobre/análisis , Zinc/análisis , Sodio/análisis , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...