Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8155, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581239

RESUMEN

Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.


Asunto(s)
Daucus carota , Policétidos , Toxinas Biológicas , Alternaria/metabolismo , Daucus carota/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Metabolismo Secundario/genética , Toxinas Biológicas/metabolismo
2.
Viruses ; 13(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34835026

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda, is a native pest species in the Western hemisphere. Since it was first reported in Africa in 2016, FAW has spread throughout the African continent and is now also present in several countries in Asia as well as Australia. The invasion of FAW in these areas has led to a high yield reduction in crops, leading to huge economic losses. FAW management options in the newly invaded areas are limited and mainly rely on the use of synthetic pesticides. Since there is a risk of resistance development against pesticides in addition to the negative environmental and human health impacts, other effective, sustainable, and cost-efficient control alternatives are desired. Insect pathogenic viruses fulfil these criteria as they are usually effective and highly host-specific with no significant harmful effect on beneficial insects and non-target organisms. In this review, we discuss all viruses known from FAW and their potential to be used for biological control. We specifically focus on baculoviruses and describe the recent advancements in the use of baculoviruses for biological control in the native geographic origin of FAW, and their potential use in the newly invaded areas. Finally, we identify current knowledge gaps and suggest new avenues for productive research on the use of viruses as a biopesticide against FAW.


Asunto(s)
Virus de Insectos/fisiología , Control Biológico de Vectores , Spodoptera/virología , Animales , Baculoviridae/clasificación , Baculoviridae/aislamiento & purificación , Baculoviridae/fisiología , Agentes de Control Biológico/aislamiento & purificación , Productos Agrícolas , Especificidad del Huésped , Virus de Insectos/clasificación , Virus de Insectos/aislamiento & purificación , Control Biológico de Vectores/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...