Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Am J Clin Nutr ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004283

RESUMEN

BACKGROUND: Considerable evidence supports the effectiveness of nutritional supplementation with or without nutrition education in preventing stunting in developing countries, but evidence from Afghanistan is scarce. OBJECTIVE: This project aimed to assess the effectiveness of specialized nutritious food (SNF), social and behavior change communication (SBCC) intervention to prevent stunting among children under 2 years during the first 1,000 days of life in Badakhshan, Afghanistan. METHODS: We used a community-based quasi-experimental pre-post study design with a control group. Pregnant and lactating women received a monthly ration of 7.5 kg of Super Cereal (250g/day) during pregnancy and the first 6 months of breastfeeding. Children aged 6-23 months received 30 sachets of medium-quantity lipid-based nutrient supplement (50g/sachet/day) monthly. We compared pre- and post-intervention assessments of the intervention and control groups to isolate the effect of the intervention on key study outcomes at the endline by difference-in-differences (DID) estimates. RESULTS: A total of 2,928 and 3,205 households were surveyed at baseline and endline. DID estimates adjusted for child, maternal, and household characteristics indicated a significant reduction in stunting (DID: -5% (95% CI: -9.9, -0.2) and underweight (DID: -4.6% (95% CI: -8.6, -0.5) among children <2 years of age. However, DID estimates for wasting among children in the intervention and control groups were not significantly different (DID: -1.7 (95% CI: -5.1,1.6). Furthermore, exposure to the SBCC messages was associated with improvements in the early initiation of breastfeeding (DID: 19.6% (95% CI: 15.6,23.6), exclusive breastfeeding under 6-months (DID: 11.0% (95% CI: 2.3,19.7), minimum meal frequency (MMF) (DID: 23% (95% CI: 17.7,28.2), minimum acceptable diet (MAD) (DID: 13% (95% CI: 9.8,16.3). CONCLUSIONS: The provision of SNF in combination with SBCC during the first 1,000 days of life was associated with reduction in stunting and underweight and improvements in IYCF practices among children under 2 years of age. CLINICAL TRIAL REGISTRY NUMBER: Clinicaltrials.gov, NCT04581993.

2.
Heliyon ; 10(13): e33327, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027488

RESUMEN

This investigation portrays the phytochemical screening, green synthesis, characterization of Fe and Zn nanoparticles, their antibacterial, anti-inflammation, cytotoxicity, and anti-thrombolytic activities. Four dissimilar solvents such as, n-hexane, chloroform, ethyl acetate and n-butanol were used to prepare the extracts of Phlomis cashmeriana Royle ex Benth. This is valued medicinal plant (Family Lamiaceae), native to mountains of Afghanistan and Kashmir. In the GC-MS study of its extract, the identified phytoconstituents have different nature such as terpenoids, alcohol and esters. The synthesized nanoparticles were characterized by SEM, UV, XRD, and FT-IR. The phytochemical analysis showed that the plant contains TPC (total phenolic content) 297.51 mg GAE/g and TFC (total flavonoid content) 467.24 mg CE/g. The cytotoxicity values have shown that the chloroform, n-butanol and aqueous extracts were more toxic than other extracts. The anti-inflammatory potential of n-butanol and aqueous extracts was found higher than all other extracts. Chloroform and n-hexane extracts have low MIC values against both E. coli and S. aureus bacterial strains. Chloroform and aqueous extracts have great anti-thrombolytic potential than all other extracts. Overall, this study successfully synthesized the nanoparticles and provides evidence that P. cashmeriana have promising bioactive compounds that could serve as potential source in the drug formulation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38976046

RESUMEN

The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.

4.
Adv Colloid Interface Sci ; 331: 103241, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38909547

RESUMEN

Solid Oxide Fuel Cells (SOFCs) have proven to be highly efficient and one of the cleanest electrochemical energy conversion devices. However, the commercialization of this technology is hampered by issues related to electrode performance degradation. This article provides a comprehensive review of the various degradation mechanisms that affect the performance and long-term stability of the SOFC anode caused by the interplay of physical, chemical, and electrochemical processes. In SOFCs, the most used anode material is nickel-yttria stabilized zirconia (Ni-YSZ) due to its advantages of high electronic conductivity and high catalytic activity for H2 fuel. However, various factors affecting the long-term stability of the Ni-YSZ anode, such as redox cycling, carbon coking, sulfur poisoning, and the reduction of the triple phase boundary length due to Ni particle coarsening, are thoroughly investigated. In response, the article summarizes the state-of-the-art diagnostic tools and mitigation strategies aimed at improving the long-term stability of the Ni-YSZ anode.

5.
Plant J ; 119(2): 879-894, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923085

RESUMEN

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/parasitología , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animales , Giberelinas/metabolismo , Gosipol/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Mariposas Nocturnas/fisiología , Larva/crecimiento & desarrollo
6.
Environ Sci Pollut Res Int ; 31(26): 37963-37987, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38780845

RESUMEN

Exposure to heavy metals in various populations can lead to extensive damage to different organs, as these metals infiltrate and bioaccumulate in the human body, causing metabolic disruptions in various organs. To comprehensively understand the metal homeostasis, inter-organ "traffic," and extensive metabolic alterations resulting from heavy metal exposure, employing complementary analytical methods is crucial. Metabolomics is pivotal in unraveling the intricacies of disease vulnerability by furnishing thorough understandings of metabolic changes linked to different metabolic diseases. This field offers exciting prospects for enhancing the disease prevention, early detection, and tailoring treatment approaches to individual needs. This article consolidates the existing knowledge on disease-linked metabolic pathways affected by the exposure of diverse heavy metals providing concise overview of the underlying impact mechanisms. The main aim is to investigate the connection between the altered metabolic pathways and long-term complex health conditions induced by heavy metals such as diabetes mellitus, cardiovascular diseases, renal disorders, inflammation, neurodegenerative diseases, reproductive risks, and organ damage. Further exploration of common pathways may unveil the shared targets for treating associated pathological conditions. In this article, the role of metabolomics in disease susceptibility is emphasized that metabolomics is expected to be routinely utilized for the diagnosis and monitoring of diseases and practical value of biomarkers derived from metabolomics, as well as determining their appropriate integration into extensive clinical settings.


Asunto(s)
Exposición a Riesgos Ambientales , Salud Ambiental , Metabolómica , Metales Pesados , Humanos , Biomarcadores/metabolismo
7.
Drug Dev Ind Pharm ; 50(6): 537-549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38771120

RESUMEN

OBJECTIVE AND SIGNIFICANCE: Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS: Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION: The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.


Asunto(s)
Naproxeno , Niacinamida , Solubilidad , Comprimidos , Difracción de Rayos X , Naproxeno/química , Niacinamida/química , Difracción de Rayos X/métodos , Excipientes/química , Química Farmacéutica/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Composición de Medicamentos/métodos , Microscopía Electrónica de Rastreo/métodos
8.
Acta Radiol ; : 2841851241249161, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751050

RESUMEN

BACKGROUND: Advances in molecular imaging strategies have had an effect on precise diagnosis and treatment. Research has been intensified to develop more effective and versatile radiopharmaceuticals to uplift diagnostic efficiency and, consequently, the treatment. PURPOSE: To label the flutamide (FLUT) coupled with diethylenetriamine pentaacetate (DTPA) with technetium-99 m (99mTc) and to evaluate its binding efficiency with rhabdomyosarcoma (RMS) cancer cells. MATERIAL AND METHODS: Radiolabeling of FLUT with 185 MBq freshly eluted 99mTcO4-1 was carried out via DTPA bifunctional chelating agent using stannous chloride reducing agent at pH 5. The labeled compound was assessed for its purity using chromatography analysis, stability in saline and blood serum, AND charge using paper electrophoresis. Normal biodistribution was studied using a mouse model, while binding affinity with RMS cancer cells was studied using an internalization assay. The in vivo accumulation of RMS cancer cells in a rabbit model was monitored using a SPECT gamma camera. RESULTS: Radiolabeling reaction displayed a pharmaceutical yield of 97% and a stability assay showed >95% intact radiopharmaceutical up to 6 h in saline and blood serum. In vitro internalization studies showed the potential of [99mTc]DTPA-FLUT to enter into cancer cells. This biodistribution study showed rapid blood clearance and minimum uptake by body organs, and scintigraphy displayed the [99mTc]DTPA-FLUT uptake by lesion, induced by RMS cancer cell lines in rabbit. CONCLUSION: Stable, newly developed [99mTc]DTPA-FLUT seeks its way to internalize into RMS cancer cells, indicating it could be a potential candidate for the diagnosis of RMS cancer.

9.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38675373

RESUMEN

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

10.
Front Artif Intell ; 7: 1329737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646416

RESUMEN

Background and purpose: We proposed an artificial neural network model to predict radiobiological parameters for the head and neck squamous cell carcinoma patients treated with radiation therapy. The model uses the tumor specification, demographics, and radiation dose distribution to predict the tumor control probability and the normal tissue complications probability. These indices are crucial for the assessment and clinical management of cancer patients during treatment planning. Methods: Two publicly available datasets of 31 and 215 head and neck squamous cell carcinoma patients treated with conformal radiation therapy were selected. The demographics, tumor specifications, and radiation therapy treatment parameters were extracted from the datasets used as inputs for the training of perceptron. Radiobiological indices are calculated by open-source software using dosevolume histograms from radiation therapy treatment plans. Those indices were used as output in the training of a single-layer neural network. The distribution of data used for training, validation, and testing purposes was 70, 15, and 15%, respectively. Results: The best performance of the neural network was noted at epoch number 32 with the mean squared error of 0.0465. The accuracy of the prediction of radiobiological indices by the artificial neural network in training, validation, and test phases were determined to be 0.89, 0.87, and 0.82, respectively. We also found that the percentage volume of parotid inside the planning target volume is the significant parameter for the prediction of normal tissue complications probability. Conclusion: We believe that the model has significant potential to predict radiobiological indices and help clinicians in treatment plan evaluation and treatment management of head and neck squamous cell carcinoma patients.

11.
ACS Omega ; 9(13): 15677-15688, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585081

RESUMEN

Metabolic disorders pose significant global health challenges, necessitating innovative therapeutic approaches. This study focused on the multifaceted therapeutic potential of berberine-enriched extract (BEE) in mitigating metabolic impairment induced by streptozotocin (STZ) in a rat model and compared the effects of BEE with berberine (BBR) and metformin (MET) to comprehensively evaluate their impact on various biochemical parameters. Our investigation reveals that BEE surpasses the effects of BBR and MET in ameliorating metabolic impairment, making it a promising candidate for managing metabolic disorders. For this, 30 male Wistar rats were divided into five groups (n = 6): control (CN), STZ, STZ + MET, STZ + BBR, and STZ + BEE. The treatment duration was extended over 4 weeks, during which various biochemical parameters were monitored, including fasting blood glucose (FBG), lipid profiles, inflammation, liver and kidney function biomarkers, and gene expressions of various metabolizing enzymes. The induction of metabolic impairment by STZ was evident through an elevated FBG level and disrupted lipid profiles. The enriched extract effectively regulated glucose homeostasis, as evidenced by the restoration of FBG levels, superior to both BBR and MET. Furthermore, BEE demonstrated potent effects on insulin sensitivity, upregulating the key genes involved in carbohydrate metabolism: GCK, IGF-1, and GLUT2. This highlights its potential in enhancing glucose utilization and insulin responsiveness. Dyslipidemia, a common occurrence in metabolic disorders, was effectively managed by BEE. The extract exhibited superior efficacy in regulating lipid profiles. Additionally, BEE exhibited significant anti-inflammatory properties, surpassing the effects of BBR and MET in lowering the levels of inflammatory biomarkers (IL-6 and TNF-α), thereby ameliorating insulin resistance and systemic inflammation. The extract's superior hepatoprotective and nephroprotective effects, indicated by the restoration of liver and kidney function biomarkers, further highlight its potential in maintaining organ health. Moreover, BEE demonstrated potent antioxidant properties, reducing oxidative stress and lipid peroxidation in liver tissue homogenates. Histopathological examination of the pancreas underscored the protective effects of BEE, preserving and recovering pancreatic ß-cells damaged by STZ. This collective evidence positions BEE as a promising therapeutic candidate for managing metabolic disorders and offers potential benefits beyond current treatments. In conclusion, our findings emphasize the remarkable therapeutic efficacy of BEE and provide a foundation for further research into its mechanisms, long-term safety, and clinical translation.

12.
RSC Adv ; 14(13): 8837-8870, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38495994

RESUMEN

This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.

13.
Plant Cell Rep ; 43(4): 102, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499710

RESUMEN

KEY MESSAGE: The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.


Asunto(s)
Gossypium , Peróxido de Hidrógeno , Gossypium/metabolismo , Peróxido de Hidrógeno/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
14.
JAMA Netw Open ; 7(2): e2356609, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372998

RESUMEN

Importance: In resource-constrained settings where the neonatal mortality rate (NMR) is high due to preventable causes and health systems are underused, community-based interventions can increase newborn survival by improving health care practices. Objectives: To develop and evaluate the effectiveness of a community-based maternal and newborn care services package to reduce perinatal and neonatal mortality in rural Pakistan. Design, Setting, and Participants: This cluster randomized clinical trial was conducted between November 1, 2012, and December 31, 2013, in district Rahim Yar Khan in the province of Punjab. A cluster was defined as an administrative union council. Any consenting pregnant resident of the study area, regardless of gestational age, was enrolled. An ongoing pregnancy surveillance system identified 12 529 and 12 333 pregnancies in the intervention and control clusters, respectively; 9410 pregnancies were excluded from analysis due to continuation of pregnancy at the end of the study, loss to follow-up, or miscarriage. Participants were followed up until the 40th postpartum day. Statistical analysis was performed from January to May 2014. Intervention: A maternal and newborn health pack, training for community- and facility-based health care professionals, and community mobilization through counseling and education sessions. Main Outcomes and Measures: The primary outcome was perinatal mortality, defined as stillbirths per 1000 births and neonatal death within 7 days per 1000 live births. The secondary outcome was neonatal mortality, defined as death within 28 days of life per 1000 live births. Systematic random sampling was used to allocate 10 clusters each to intervention and control groups. Analysis was conducted on a modified intention-to-treat basis. Results: For the control group vs the intervention group, the total number of households was 33 188 vs 34 315, the median number of households per cluster was 3092 (IQR, 3018-3467) vs 3469 (IQR, 3019-4075), the total population was 229 155 vs 234 674, the mean (SD) number of residents per household was 6.9 (9.5) vs 6.8 (9.6), the number of males per 100 females (ie, the sex ratio) was 104.2 vs 103.7, and the mean (SD) number of children younger than 5 years per household was 1.0 (4.2) vs 1.0 (4.3). Altogether, 7598 births from conrol clusters and 8017 births from intervention clusters were analyzed. There was no significant difference in perinatal mortality between the intervention and control clusters (rate ratio, 0.86; 95% CI, 0.69-1.08; P = .19). The NMR was lower among the intervention than the control clusters (39.2/1000 live births vs 52.2/1000 live births; rate ratio, 0.75; 95% CI, 0.58-0.95; P = .02). The frequencies of antenatal visits and facility births were similar between the 2 groups. However, clean delivery practices were higher among intervention clusters than control clusters (63.2% [2284 of 3616] vs 13.2% [455 of 3458]; P < .001). Chlorhexidine use was also more common among intervention clusters than control clusters (55.9% [4271 of 7642] vs 0.3% [19 of 7203]; P < .001). Conclusions and Relevance: This pragmatic cluster randomized clinical trial demonstrated a reduction in NMR that occurred in the background of improved household intrapartum and newborn care practices. However, the effect of the intervention on antenatal visits, facility births, and perinatal mortality rates was inconclusive, highlighting areas requiring further research. Nevertheless, the improvement in NMR underscores the effectiveness of community-based programs in low-resource settings. Trial Registration: ClinicalTrials.gov Identifier: NCT01751945.


Asunto(s)
Mortalidad Infantil , Muerte Perinatal , Embarazo , Niño , Masculino , Recién Nacido , Femenino , Humanos , Familia , Parto , Mortalidad Perinatal
15.
Adv Sci (Weinh) ; 11(4): e2306157, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032126

RESUMEN

Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Humanos , Animales , Sistemas CRISPR-Cas/genética , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Insectos
16.
Heliyon ; 9(11): e22404, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074886

RESUMEN

The carbon footprint (CFP) is a measure of greenhouse gases (GHGs) emitted throughout the lifecycle of a product or activity, while the energy footprint (EFP) and water footprint (WFP) measure energy and water consumption, respectively. These footprints are essential for managing emissions and consumption and promoting low-carbon consumption. A carbon labeling scheme could help consumers make informed choices. Asia is a major textile producer and consumer, so studying textiles' carbon, energy, and water footprints is essential for managing domestic emissions, energy and water consumption, and international trade negotiations. This paper presents a method and framework for assessing CFP, EFP, and WFP at the product level and calculates the footprints for textile products. The results show that the total CFP of all textile products produced is 42,624.12 MT CO2e, with indirect emissions contributing significantly more than direct emissions. The total EFP is 248.38 PJ, with electricity consumption being the main contributor, while the total WFP is 80.71 billion liters. The spinning stage of production has the highest CFP and EFP, and energy consumption is the main contributor to all footprints. These results can help compare different products and reduce the footprints of the textile sector.

17.
Cureus ; 15(12): e49882, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053989

RESUMEN

Objective This study aims to thoroughly assess the radiation dose distribution to critical organs in patients with nasopharyngeal carcinoma, focusing on the correlation between the radiation dosages for the various organs at risk (OARs) in nasopharyngeal cancer patients. Methods We meticulously analysed a dataset comprising 38 nasopharyngeal carcinoma patients, focusing on radiation dosages measured in Gray (Gy) and volumetric data in cubic centimetres (cc) of critical organs, including the lens, brainstem, spinal cord, optic nerve, optic chiasm, and cochlea. A detailed exploratory data analysis approach encompassed univariate, bivariate, and multivariate techniques. Results Our analysis revealed several key findings. The mean and median values across various dose measurements were closely aligned, indicating symmetrical distributions with minimal skewness. The histograms further corroborated this, showing evenly distributed dose values across different anatomical regions. The correlation matrix highlighted varying degrees of interrelationships between the doses, with some showing strong correlations while others exhibited minimal or no correlation. The 3D scatter plot provided a view of the multi-dimensional dose relationships, with a specific focus on the spinal cord, lens, and brainstem doses. The bivariate scatter plots revealed symmetrical distributions between the right and left lens doses and more complex relationships involving the brainstem and spinal cord, illustrating the intricacies of dose distribution in radiation therapy. Conclusion Our findings reveal distinct radiation exposure patterns to OARs of nasopharyngeal carcinoma. This research emphasises the need for tailored radiation therapy planning to achieve optimal clinical outcomes while safeguarding vital organs.

18.
Physiol Plant ; 175(6): e14108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148237

RESUMEN

Plants cannot avoid environmental challenges and are constantly threatened by diverse biotic and abiotic stresses. However, plants have developed a unique immune system to defend themselves against the invasion of various pathogens. Melatonin, N-acetyl-5-methoxytryptamine has positive physiological effects in plants that are involved in disease resistance. The processes underlying melatonin-induced pathogen resistance in plants are still unknown. The current study explores how melatonin regulates the plant-disease interaction in maize. The results showed that 400 µM melatonin strongly reduced the disease lesion on maize stalks by 1.5 cm and corn by 4.0 cm caused by Fusarium graminearum PH-1. Furthermore, after treatment with melatonin, the plant defense enzymes like SOD significantly increased, while POD and APX significantly decreased compared to the control. In addition, melatonin can also improve maize's innate immunity, which is mediated by melatonin treatments through the salicylic acid signaling pathway, and up-regulate the defense-associated expression of PR1, LOX1, OXR, serPIN, and WIPI genes in maize. Melatonin not only inhibits the disease in the maize stalks and corn, but also down-regulates the deoxynivalenol (DON) production-related expression of genes Tri1, Tri4, Tri5, and Tri6 in maize. Overall, this study sheds new light on the mechanisms by which melatonin regulates antioxidant enzymes and defense-related genes involved in plant immunity to effectively suppress plant diseases.


Asunto(s)
Fusarium , Melatonina , Melatonina/farmacología , Zea mays/metabolismo , Virulencia , Plantas , Enfermedades de las Plantas
19.
ACS Omega ; 8(44): 41918-41929, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969994

RESUMEN

In ancient times, Withania coagulans Dunal was used as a therapeutic plant for the treatment of several diseases. This report aims to examine the effect of Agrobacterium tumefactions-mediated transformation of W. coagulans with the rolA gene to enhance secondary metabolite production, antioxidant activity, and anticancer activity of transformed tissues. Before transgenic plant production, the authors designed an efficient methodology for in vitro transformation. In this study, leaf explants were cultured on Murashage and Skoog (MS) media containing different amounts of naphthalene acetic acid (NAA) and benzyl adenine (BA). The best performance for inducing embryogenic callus was in MS medium containing 4 µM NAA and 6.0 µM BA, while the best results for shooting (100%) were obtained at 8 µM benzyl adenine. On the other hand, direct shooting was attained by subculturing leaves on MS medium supplemented with 8 µM benzyl adenine. Prolonged shoots showed excellent in vitro rooting results (80%) with 12 µM indole-3-butyric acid (IBA). The samples were precultivated for 3 days and were followed by 48 h infection with A. tumefaciens strain GV3101 having pCV002. Then, a vector expressed the rol A gene of strain Agrobacterium rhizogenes. Furthermore, three independent transgenic shoot lines and one callus line (T2) were produced and exhibited stable integration of transgene rol A genes, as revealed by PCR analysis. Transgenic strains showed a significant increase in antioxidant potential as compared to untransformed plants. Additionally, LC-MS analysis showed that the transformed strains have a higher withanolide content as compared to untransformed ones. Moreover, the reduced proliferation of prostate cancer cells was observed after treatment with extracts of transgenic plants. Furthermore, these transformed plants exhibited superior antioxidant capability and higher withanolide content than untransformed ones. In conclusion, the reported data can be used to select withanolide-rich germplasm from transformed cell cultures.

20.
ACS Appl Mater Interfaces ; 15(38): 45354-45366, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702662

RESUMEN

The present work aims to predict the degradation in the performance of a solid oxide fuel cell (SOFC) cathode owing to cation interdiffusion between the electrolyte and cathode and surface segregation. Cation migration in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-x (LSCF)-Gd0.10Ce0.90O1.95 (GDC) composite cathode is evaluated in relation to time up to 1000 h using scanning transmission electron microscopy (STEM)-energy-dispersive X-ray spectroscopy (EDXS). The resulting insulating phase formed within the GDC interlayer is quantified by means of the volume fraction using a two-dimensional (2D) image analysis technique. For the very first time, the amount of the insulating phase in the GDC interlayer is quantified, and the corresponding performance degradation of the LSCF cathode is predicted. Mathematical relationships are established for the estimation of degradation due to surface segregation of the cathode. The ohmic resistance between the cathode and the GDC interlayer/electrolyte interface and the polarization resistance of the cathode, characterized by electrochemical impedance spectroscopy (EIS), show an excellent match with the predicted results. The combined degradation analysis and modeling for the cathode lifetime prediction provide a systematic understanding of the time-dependent cation migration and segregation behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...