Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Intervalo de año de publicación
1.
Environ Monit Assess ; 196(9): 778, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096409

RESUMEN

Urban planning is essential for managing the diverse impacts of urban green spaces, such as public access, stormwater control, urban life quality, and landscape aesthetics, promoting sustainable urban development and urban residents' well-being by integrating green space considerations into city planning. The aim of this study is to use graph-based metrics to calculate the connectivity of UGS across the main municipal zones of Ardabil city over consecutive periods under different population growth rates. Another objective of this study is to compare the connectivity values of UGS in the four municipal zones and to evaluate changes in the connectivity indices at various distance thresholds of UGS patches. After identifying UGS in different periods, the changes in graph-based connectivity indices at various distance thresholds of UGS patches were analyzed. Additionally, the changes in connectivity indices over different periods and across various municipal zones were compared and analyzed. The findings reveal that UGS areas were larger in the past but have recently had smaller patch sizes. Connectivity between UGS nodes (dNL) decreased at various distances over the study years, showing a declining trend in different connectivity indices. UGS connectivity decreased in municipal zones 1, 2, and 3 but increased in recent years after a decline until 2012 across all four zones of Ardabil city. Zone 4 had the highest UGS connectivity due to newly developed urban areas and well-allocated UGSs. Integrating the ecological impacts of UGS connectivity in urban development and design will enhance trade-offs between conservation, public health, and social equity. New urban areas should allocate sufficient land for UGS and parks, ensuring accessibility to support health and leisure through municipal planning. The study highlights the need for sustainable urban development policies that prioritize the allocation and maintenance of UGSs.


Asunto(s)
Ciudades , Planificación de Ciudades , Monitoreo del Ambiente , Irán , Monitoreo del Ambiente/métodos , Parques Recreativos , Humanos , Conservación de los Recursos Naturales/métodos
2.
Environ Res ; 260: 119622, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019141

RESUMEN

Rapid urbanization worldwide, poses numerous environmental challenges between escalating land use land cover (LULC) changes and groundwater quality dynamics. The main objective of this study was to investigate the dynamics of groundwater quality and LULC changes in Sargodha district, Punjab, Pakistan. Groundwater hydrochemistry reveals acceptable pH levels (<8) but total dissolved solids (TDS), electrical conductivity (EC) and HCO3- showed dynamic fluctuations by exceeding WHO limits. Piper diagrams, indicated dominance by magnesium and bicarbonate types, underscoring the influence of natural processes and anthropogenic activities. Major ion relationships in 2010, 2015, and 2021 showed a high correlation (R2 > 0.85) between Na+ and Cl-, suggesting salinization. whereas, the poor correlation (<0.17) between Ca2+ and HCO3- does not support calcite dissolution as the primary process affecting groundwater composition. The examination of nitrate contamination in groundwater across the years 2010, 2015, and 2021 was found to be high in the municipal sewage zone, suggesting a prevailing issue of nitrate contamination attributed to urban activities. The Nitrate Pollution Index (NPI) reveals a concerning trend, with a higher proportion of samples classified under moderate to high pollution categories in 2015 and 2021 compared to 2010. The qualitative assessment of nitrate concentration on spatiotemporal scale showed lower values in 2010 while a consistent rise from 2015 to 2021 in north-east and western parts of district. Likewise, NPI was high in the north-eastern and south-western regions in 2010, then reduced in subsequent years, which may be attributed to effective waste management practices and alterations in agricultural practices. The health risk assessment of 2010 indicated Total Health Hazard Quotient (THQ) within the standard limit, while in 2015 and 2021, elevated health risk was observed. This study emphasizes the need to use multiple approaches to groundwater management for sustainable land use planning and regulations that prioritize groundwater quality conservation.

3.
Int J Biol Macromol ; 277(Pt 1): 134104, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39048001

RESUMEN

Hydrogels are hydrophilic, insoluble, and highly porous 3D networks capable of absorbing large amounts of water. This study aimed to develop a carboxymethyl cellulose/graphene oxide (CMC/GO) hydrogel, cross-linked with citric acid and modified with zinc oxide (ZnO) nanoparticles (CMC/GO/ZnO), synthesized via the sol-gel method. The formulated composite hydrogel samples were characterized by Fourier transmittance infrared spectroscopy (FTIR), scanning electron microscopy (SEM) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermo-gravimetric analysis (TGA). The hydrogels were tested for the adsorption of basic fuchsin (BF) dye from the aqueous medium under various conditions, such as adsorbent dosage, contact time, pH, and temperature, using batch adsorption. The adsorption data best fit the Langmuir and Temkin models, with maximum adsorption capacity (qmax) of 172.41 mg/g for CMC/GO and 303.03 mg/g for CMC/GO/ZnO. Optimal adsorption occurred at pH = 6 and within 30 min. The process followed a pseudo-second-order kinetic model, and thermodynamic results indicated that the adsorption process is physical, endothermic and spontaneous. The COOH groups in the hydrogels enhanced affinity for cationic dyes through hydrogen bonding and electrostatic interactions. Thus, CMC/GO and CMC/GO/ZnO hydrogels are efficient and promising adsorbents for environmental remediation.

4.
Int J Biol Macromol ; 277(Pt 4): 134096, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067721

RESUMEN

Guava, a commercially important fruit crop, is being grown in tropical and subtropical regions around the world. Due to the perishable nature of guava fruits, there are great losses during marketing, transport and storage. The application of edible coating is emerging as a low-cost, simple to implement and efficient method for extending the postharvest life of fresh horticultural produces, such as fruits and vegetables. This study aimed to assess the potential of Albizia gum (AZG) to improve storability and maintain the overall fruit quality of stored guava fruits. Freshly harvested guava fruits were coated with 0 % (control), 1.5 %, 3 % or 4.5 % AZG. After coating treatment, the fruits were stored at 20 ± 1 °C and 85-90 % relative humidity for 15 days. The results revealed that 4.5% AZG coating suppressed the weight loss and decay incidence up to 27 % and 36 %, respectively, as compared with control. The fruits coated with 4.5 % AZG had the maximum titratable acidity (0.40 %), ascorbic acid (104.47 mg·100 g-1), total antioxidants (118.84 mmol Trolox·100 g-1), total phenolics (285.57 mg·kg-1) and flavonoids (60.12 g·kg-1) on 15th day of storage. However, the minimum total soluble solids (11.97 %), sugar-acid ratio (29.31), relative ion leakage (68.40 %), malondialdehyde (0.11 nmol·kg-1 FW) and hydrogen peroxide (16.05 µmol·kg-1 FW) were recorded in the fruits of same treatment on 15th day of storage. Furthermore, the activities of antioxidant enzymes "i.e., superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)" were increased under the influence of AZG coating. Consequently, as compared to uncoated fruits, AZG-coated fruits exhibited reduced activities of fruit softening enzymes "i.e., cellulase, pectin methylesterase (PME), and polygalacturonase (PG)". To sum up, the application of AZG-based edible coating could markedly improve the storage life of guavas and maintain overall fruit quality.

5.
Chemosphere ; 364: 142959, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069101

RESUMEN

The metal oxide-based nanostructures of variable size and shape are found effective in optimizing the gas sensing ability and pollutant degradation. The size induced lattice strain and large band gap in 3nm CeO2 quantum dots evolved the ability towards hydrogen gas sensing and dye degradation compared to nanopebbles and nanoparticles of sizes 15 ± 3, and 30 ± 12 nm. The smaller CeO2 quantum dots than Debye length was found underlying reason for nearly four times sensor response and selectivity towards reducing hydrogen gases than the oxidizing gases at 1-10 ppm level. The lattice strain calculated by Rietveld refinement and W-H analysis was found in-line with the size of CeO2 nanostructures. The enhancement in lattice strain and optical band gap (2.66, 2.78, and 2.89 eV) with decrease in size are found critical for determining the overall efficiency of CeO2 nanostructures for photocatalytic activity, attributed to the strong quantum confinement effect. The higher catalytic activity of 98 % was achieved CeO2 quantum dots in comparison to the 95 % and 94 % obtained for CeO2 nanopebbles and nanoparticles. The impact of change in degradation efficacy and gas sensing ability of different CeO2 nanomaterials is discussed in detail. This work offers a novel and simplistic method to produce CeO2 quantum dots as an efficient sensor for selective detection of H2 gas and photocatalyst. The correlation between size, Debye length, band gap, and lattice strain gives an insight for understanding the underlying detection mechanism for selective detection of reducing gas molecules and efficient pollutant remediation.

6.
Biosensors (Basel) ; 14(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920608

RESUMEN

Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.


Asunto(s)
Bencimidazoles , Carbamatos , Técnicas Electroquímicas , Nanotubos de Carbono , Plaguicidas , Carbamatos/análisis , Bencimidazoles/análisis , Plaguicidas/análisis , Nanotubos de Carbono/química , Técnicas Biosensibles , Electrodos , Materiales Biomiméticos/química , Límite de Detección
7.
Chem Biodivers ; 21(8): e202400195, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837651

RESUMEN

Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 µg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 µg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 µg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 µg/mL. The current study identified eryngial, an α,ß-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.


Asunto(s)
Aldehídos , Eryngium , Aceites Volátiles , Aldehídos/química , Aldehídos/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Eryngium/química , Eryngium/metabolismo , Relación Dosis-Respuesta a Droga , Germinación/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Estructura Molecular
8.
Nanomicro Lett ; 16(1): 215, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874816

RESUMEN

MXene has garnered widespread recognition in the scientific community due to its remarkable properties, including excellent thermal stability, high conductivity, good hydrophilicity and dispersibility, easy processability, tunable surface properties, and admirable flexibility. MXenes have been categorized into different families based on the number of M and X layers in Mn+1Xn, such as M2X, M3X2, M4X3, and, recently, M5X4. Among these families, M2X and M3X2, particularly Ti3C2, have been greatly explored while limited studies have been given to M5X4 MXene synthesis. Meanwhile, studies on the M4X3 MXene family have developed recently, hence, demanding a compilation of evaluated studies. Herein, this review provides a systematic overview of the latest advancements in M4X3 MXenes, focusing on their properties and applications in energy storage devices. The objective of this review is to provide guidance to researchers on fostering M4X3 MXene-based nanomaterials, not only for energy storage devices but also for broader applications.

9.
Mol Cancer Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775808

RESUMEN

Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN-amplification. The subset of patients with tumors expressing high levels of USP44 had a significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that is regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to pathophysiology in this disease.

10.
PeerJ Comput Sci ; 10: e1834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660201

RESUMEN

Identification of the Internet of Things (IoT) devices has become an essential part of network management to secure the privacy of smart homes and offices. With its wide adoption in the current era, IoT has facilitated the modern age in many ways. However, such proliferation also has associated privacy and data security risks. In the case of smart homes and smart offices, unknown IoT devices increase vulnerabilities and chances of data theft. It is essential to identify the connected devices for secure communication. It is very difficult to maintain the list of rules when the number of connected devices increases and human involvement is necessary to check whether any intruder device has approached the network. Therefore, it is required to automate device identification using machine learning methods. In this article, we propose an accuracy boosting model (ABM) using machine learning models of random forest and extreme gradient boosting. Featuring engineering techniques are employed along with cross-validation to accurately identify IoT devices such as lights, smoke detectors, thermostat, motion sensors, baby monitors, socket, TV, security cameras, and watches. The proposed ensemble model utilizes random forest (RF) and extreme gradient boosting (XGB) as base learners with adaptive boosting. The proposed ensemble model is tested with extensive experiments involving the IoT Device Identification dataset from a public repository. Experimental results indicate a higher accuracy of 91%, precision of 93%, recall of 93%, and F1 score of 93%.

11.
J Adv Res ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38688357

RESUMEN

INTRODUCTION: Vascular catheter-related infections and thrombosis are common and may lead to serious complications after catheterization. Reducing the incidence of such infections has become a significant challenge. OBJECTIVES: This study aims to develop a super hydrophobic nanocomposite drug-loaded vascular catheter that can effectively resist bacterial infections and blood coagulation. METHODS: In this study, a SiO2 nanocoated PTFE (Polytetrafluoroethylene) catheter (PTFE-SiO2) was prepared and further optimized to prepare a SiO2 nanocoated PTFE catheter loaded with imipenem/cilastatin sodium (PTFE-IC@dMSNs). The catheters were characterized for performance, cell compatibility, anticoagulant performance, in vitro and in vivo antibacterial effect and biological safety. RESULTS: PTFE-IC@dMSNs catheter has efficient drug loading performance and drug release rate and has good cell compatibility and anticoagulant effect in vitro. Compared with the PTFE-SiO2 catheter, the inhibition ring of the PTFE-IC@dMSNs catheter against Escherichia coli increased from 3.98 mm2 to 4.56 mm2, and the antibacterial rate increased from about 50.8 % to 56.9 %, with a significant difference (p < 0.05). The antibacterial zone against Staphylococcus aureus increased from 8.63 mm2 to 11.74 mm2, and the antibacterial rate increased from approximately 83.5 % to 89.3 %, showing a significant difference (p < 0.05). PTFE-IC@dMSNs catheter also has good biocompatibility in vivo. Furthermore, the PTFE-IC@dMSNs catheter can reduce the adhesion of blood cells and have excellent anticoagulant properties, and even maintain these properties even with the addition of imipenem/cilastatin sodium. CONCLUSION: Compared with PTFE, PTFE-SiO2 and PTFE-IC@dMSNs catheters have good characterization performance, cell compatibility, and anticoagulant properties. PTFE SiO2 and PTFE-IC@dMSNs catheters have good antibacterial performance and tissue safety against E. coli and S. aureus. Relatively, PTFE-SiO2 and PTFE-IC@dMSNs catheter has better antibacterial properties and histocompatibility and has potential application prospects in anti-bacterial catheter development and anticoagulation.

12.
Chemosphere ; 357: 141868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593957

RESUMEN

Antibiotics, as a class of environmental pollutants, pose a significant challenge due to their persistent nature and resistance to easy degradation. This study delves into modeling and optimizing conventional Fenton degradation of antibiotic sulfamethoxazole (SMX) and total organic carbon (TOC) under varying levels of H2O2, Fe2+ concentration, pH, and temperature using statistical and artificial intelligence techniques including Multiple Regression Analysis (MRA), Support Vector Regression (SVR) and Artificial Neural Network (ANN). In statistical metrics, the ANN model demonstrated superior predictive accuracy compared to its counterparts, with lowest RMSE values of 0.986 and 1.173 for SMX and TOC removal, respectively. Sensitivity showcased H2O2/Fe2+ ratio, time and pH as pivotal for SMX degradation, while in simultaneous SMX and TOC reduction, fine tuning the time, pH, and temperature was essential. Leveraging a Hybrid Genetic Algorithm-Desirability Optimization approach, the trained ANN model revealed an optimal desirability of 0.941 out of 1000 solutions which yielded a 91.18% SMX degradation and 87.90% TOC removal under following specific conditions: treatment time of 48.5 min, Fe2+: 7.05 mg L-1, H2O2: 128.82 mg L-1, pH: 5.1, initial SMX: 97.6 mg L-1, and a temperature: 29.8 °C. LC/MS analysis reveals multiple intermediates with higher m/z (242, 270 and 288) and lower m/z (98, 108, 156 and 173) values identified, however no aliphatic hydrocarbon was isolated, because of the low mineralization performance of Fenton process. Furthermore, some inorganic fragments like NH4+ and NO3- were also determined in solution. This comprehensive research enriches AI modeling for intricate Fenton-based contaminant degradation, advancing sustainable antibiotic removal strategies.


Asunto(s)
Antibacterianos , Inteligencia Artificial , Peróxido de Hidrógeno , Hierro , Redes Neurales de la Computación , Sulfametoxazol , Sulfametoxazol/química , Peróxido de Hidrógeno/química , Antibacterianos/química , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Temperatura
13.
RSC Adv ; 14(14): 9819-9847, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38528922

RESUMEN

Cobalt is an essential metal to maintain several functions in the human body and is present in functional materials for numerous applications. Thus, to monitor these functions, it is necessary to develop suitable probes for the detection of cobalt. Presently, researchers are focused on designing different chemosensors for the qualitative and quantitative detection of the metal ions. Among the numerous methods devised for the identification of cobalt ions, colorimetric and fluorimetric techniques are considered the best choice due to their user-friendly nature, sensitivity, accuracy, linearity and robustness. In these techniques, the interaction of the analyte with the chemosensor leads to structural changes in the molecule, causing the emission and excitation intensities (bathochromic, hyperchromic, hypochromic, and hypsochromic) to change with a change in the concentration of the analyte. In this review, the recent advancements in the fluorimetric and colorimetric detection of cobalt ions are systematically summarized, and it is concluded that the development of chemosensors having distinctive colour changes when interacting with cobalt ions has been targeted for on-site detection. The chemosensors are grouped in various categories and their comparison and the discussion of computational studies will enable readers to have a quick overview and help in designing effective and efficient probes for the detection of cobalt in the field of chemo-sensing.

14.
J Mol Model ; 30(3): 62, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321301

RESUMEN

CONTEXT: The abilities of Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 as catalysts for N2-RR to create the NH3 are investigated by theoretical levels. The ∆Eadoption and ∆Eformation of Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 are investigated. The ∆Eadsorption of N2-RR intermediates and ΔGreaction of reaction steps of N2-RR on Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 are examined. In acceptable mechanisms, the *NN → *NNH step is potential limiting step and *NN → *NNH step in enzymatic mechanism is endothermic reaction. The ∆Greaction of *NHNH2 → *NH2NH2 step on Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 are -0.904, -0.928, -0.860, -0.882, -0.817 and -0.838 eV, respectively. The Co-Al18P18 and Ni-Al21N21 have the highest ∆Greaction values for reaction steps of N2-RR. Finally, it can be concluded that the Co-Al18P18, Ni-Al21N21, Fe-B24N24 and Mn-B27P2 have acceptable potential for N2-RR by acceptable pathways. METHODS: The structures of Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 and N2-RR intermediates are optimized by PW91PW91/6-311+G (2d, 2p) and M06-2X/cc-pVQZ as theoretical levels in GAMESS software. The convergence for force set displacement of Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 and N2-RR intermediates are 1.5 × 105 Hartree/Bohr and 6.0 × 10-5 Angstrom. The Opt = Tight and MaxStep = 30 are considered to optimize Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 and N2-RR intermediates. The frequencies of Co-Al18P18, Ni-Al21N21, Fe-B24N24, Mn-B27P27, Ti-C60 and Cu-Si72 and N2-RR intermediates are calculated.

15.
ACS Appl Mater Interfaces ; 16(8): 10104-10115, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38361321

RESUMEN

Hierarchical porous nanowire-like MoS2/CoNiO2 nanohybrids were synthesized via the hydrothermal process. CoNiO2 nanowires were selected due to the edge site, high surface/volume ratio, and superior electrochemical characteristics as the porous backbone for decoration of layered MoS2 nanoflakes to construct innovative structure hierarchical three-dimensional (3D) porous NWs MoS2/CoNiO2 hybrids with excellent charge accumulation and efficient ion transport capabilities. Physicochemical analyses were conducted on the developed hybrid composite, revealing conclusive evidence that the CoNiO2 nanowires have been securely anchored onto the surface of the MoS2 nanoflake array. The electrochemical results strongly proved the benefit of the hierarchical 3D porous MoS2/CoNiO2 hybrid structure for the charge storage kinetics. The synergistic characteristics arising from the MoS2/CoNiO2 composite yielded a notably high specific capacitance of 1340 F/g at a current density of 0.5 A/g. Furthermore, the material exhibited sustained cycling stability, retaining 95.6% of its initial capacitance after 10 000 long cycles. The asymmetric device comprising porous MoS2/CoNiO2//activated carbon encompassed outstanding energy density (93.02 Wh/kg at 0.85 kW/kg) and cycling stability (94.1% capacitance retention after 10 000 cycles). Additionally, the successful illumination of light-emitting diodes underscores the significant potential of the synthesized MoS2/CoNiO2 (2D/1D) hybrid for practical high-energy storage applications.

16.
Nanomicro Lett ; 16(1): 138, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421464

RESUMEN

Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.

17.
Environ Res ; 247: 118219, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253197

RESUMEN

This study presents a novel approach to design and optimize a sodium alginate-based hydrogel (SAH) for efficient adsorption of the model water pollutant methylene blue (MB) dye. Utilizing density functional theory (DFT) calculations, sodium alginate-g-poly (acrylamide-co-itaconic acid) was identified with the lowest adsorption energy (Eads) for MB dye among 14 different clusters. SAHs were prepared using selected monomers and sodium alginate combinations through graft co-polymerization, and swelling studies were conducted to optimize grafting conditions. Advanced characterization techniques, including FTIR, XRD, XPS, SEM, EDS, and TGA, were employed, and the process was optimized using statistical and machine learning tools. Screening tests demonstrated that Eads serves as an effective predicting indicator for adsorption capacity (qe) and MB removal efficiency (RRMB,%), with reasonable agreement between Eads and both responses under given conditions. Process modeling and optimization revealed that 5 mg of selected SAH achieves a maximum qe of 3244 mg g-1 at 84.4% RRMB under pH 8.05, 98.8 min, and MB concentration of 383.3 mg L-1, as identified by the desirability function approach. Moreover, SAH effectively eliminated various contaminants from aqueous solutions, including sulfasalazine (SFZ) and dibenzothiophene (DBT). MB adsorption onto selected SAH was exothermic, spontaneous, and followed the pseudo-first-order and Langmuir-Freundlich isotherm models. The remarkable ability of SAH to adsorb MB is attributed to its well-designed structure predicted through DFT and optimal operational conditions achieved by AI-based parametric optimization. By integrating DFT-based computations and machine-learning tools, this study contributes to the efficient design of adsorbent materials and optimization of adsorption processes, also showcasing the potential of SAH as an efficient adsorbent for the abatement of aqueous pollution.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Hidrogeles/química , Aguas Residuales , Colorantes/química , Alginatos/química , Contaminantes Químicos del Agua/química , Agua , Adsorción , Azul de Metileno/química , Cinética , Concentración de Iones de Hidrógeno
18.
RSC Adv ; 14(4): 2429-2438, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38223694

RESUMEN

The current study focuses on boosting the photocatalytic ability of reduced graphene oxide (rGO) by decorating the rGO nano-sheets with nickel oxide (NiOx) and silver (Ag) nanomaterials. The developed ternary nanomaterials were investigated using FTIR, XRD, FESEM, TEM, Raman, and UV-vis to evaluate the photo-degradation process. The rGO/NiOx/Ag ternary system showed promising photocatalytic dye degradation under simulated sunlight irradiance. The addition of NiOx and Ag nanomaterials widened the catalytic activity spectrum from the visible region to the UV-region. Besides, these materials hindered the electron-hole recombination, boosting the catalytic activity. The reusability results also clearly showed that the synthesized ternary nanomaterials have good reproducibility and stability for photocatalytic degradation of industrial wastewater.

19.
Phys Chem Chem Phys ; 26(3): 2678-2691, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175550

RESUMEN

The availability of hydrogen energy from water splitting through the electrocatalytic route is strongly dependent on the efficiency, durability, and cost of the electrocatalysts. Herein, a novel Bi2S3-covered Sm2O3 (Bi2S3-Sm2O3) nanocomposite electrocatalyst was developed by a hydrothermal route for the oxygen evolution reaction (OER). The electrochemical properties were studied in 1.00 mol KOH solution after coating the target material on the stainless-steel substrate (SS). Physical analysis via XRD, FTIR, IV, TEM/EDX, and XPS revealed that the Bi2S3-Sm2O3 composite possesses metallic surface states, thereby displaying unconventional electron dynamics and purity of phases. The Bi2S3-Sm2O3 composite shows outstanding OER activity with a low overpotential of 197 mV and a Tafel slope of 74 mV dec-1 at a 10 mA cm-2 current density as compared to pure Bi2S3 and Sm2O3. Meanwhile, the composite catalyst retains high stability even after 100 h of the chronoamperometry test. Thus, this work unveils a new avenue for the speedy flow of electrons, which is attributed to the synergetic effect between Bi2S3 and Sm2O3, as well as enriched interfacial defects, which exhibit greater oxygen adsorption capability with improved electronic assemblies in the active interfacial region. In addition, the introduced porous structure in core-shell Bi2S3-Sm2O3 provides extraordinary electrical properties. Thus, this article offers a realistic framework for electrochemical energy generation.

20.
RSC Adv ; 14(6): 3732-3747, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288151

RESUMEN

The synthesis of polymeric magnetic composites is a promising strategy for the rapid and efficient treatment of wastewater. Lead and methyl blue are extremely hazardous to living organisms. The sorption of Pb2+ and the dye methyl blue (MB) by biochar is an ecologically sustainable method to remediate this type of water pollution. We functionalized Shorea faguetiana biochar with Fe2O3 and MXene, resulting in Fe2O3/BC/MXene composites with an efficient, rapid, and selective adsorption performance. Based on X-ray photoelectron and Fourier transform infrared spectrometry, we found that the Fe2O3/BC/MXene composites had an increased number of surface functional groups (F-, C[double bond, length as m-dash]O, CN, NH, and OH-) compared with the original biochar. The batch sorption findings showed that the maximum sorption capacities for Pb2+ and MB at 293 K were 882.76 and 758.03 mg g-1, respectively. The sorption phenomena obeyed a pseudo-second-order (R2 = 1) model and the Langmuir isotherm. There was no competition between MB and Pb2+ in binary solutions, indicating that MB and Pb2+ did not influence each other as a result of their different adsorption mechanisms (electrostatic interaction for Pb2+ and hydrogen bonding for MB). This illustrates monolayer sorption on the Fe2O3/BC/MXene composite governed by chemical adsorption. Thermodynamic investigations indicated that the sorption process was spontaneous and exothermic at 293-313 K, suggesting that it is feasible for practical applications. Fe2O3/BC/MXene can selectively adsorb Pb2+ ions and MB from wastewater containing multiple interfering metal ions. The sorption capacities were still high after five reusability experiments. This work provides a novel Fe2O3/BC/MXene composite for the rapid and efficient removal of Pb2+ and MB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...