Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Chem Asian J ; : e202400956, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353036

RESUMEN

In this study, we investigate the adsorption  of MoSi2N4) and MoSi2N4-VN towards five potential lung cancer volatile organic compounds (VOCs). Density functional theory calculations reveal that MoSi2N4 weakly adsorb the mentioned VOCs, whereas introduction of nitrogen vacancies significantly enhances the adsorption energies ([[EQUATION]]), both in gas phase and aqueous medium. The MoSi2N4-VN monolayers exhibit a reduced bandgap and facilitate charge transfer upon VOCs adsorption, resulting in enhanced [[EQUATION]] values of -0.83, -0.76, -0.49, -0.61, and -0.50 eV for 2,3,4-trimethyl hexane, 4-methyl octane, o-toluidine, Aniline, and Ethylbenzene, respectively. Bader charge analysis and spin-polarized density of states (SPDOS) elucidate the charge redistribution and hybridization between MoSi2N4-VN and the adsorbed VOCs. The work function of MoSi2N4-VN is significantly reduced upon VOCs adsorption due to induced dipole moments, enabling smooth charge transfer and selective VOCs sensing. Notably, MoSi2N4-VN monolayers exhibit sensor responses ranging from 16.2% to 26.6% towards the VOCs, with discernible selectivity. Importantly, the recovery times of the VOCs desorption is minimal, reinforcing the suitability of MoSi2N4-VN as a rapid, and reusable biosensor platform for efficient detection of lung cancer biomarkers. Thermodynamic analysis based on Langmuir adsorption model shows improved adsorption and detection capabilities MoSi2N4-VN under diverse operating conditions of temperatures and pressures.

2.
Sci Rep ; 14(1): 22165, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333361

RESUMEN

This research purpose was focused to document the traditional ethnobotanical knowledge (TEK) associated with important wild plants and indigenous communities residing in mountainous zone of District Sudhnoti of Azad Jammu and Kashmir, Pakistan and to determine their conservation status with suggestions and recommendations to protect and propagate the rare and endangered wild flora of the area for sustainable use. The data regarding traditional ethnomedicines (TEMs) and phytogeography with conservation analysis of wild plants were collected via structured and semi structured interviews of 150 participants belonging to various professions and of both genders. Prior consent and permission were obtained from family heads and from all the participants, and the data were shared with all the informants through the local female translator guide. To validate the collected data, various microstatistical tools, such as the informant consensus factor (ICF), fidelity level (FL) and data matrix ranking (DMR) were used. The relative frequency of citations (RFC) and rank order of popularity (ROP) were also calculated to determine and authenticate the relative importance of TEMs which may be further studied in future research and used for drug discovery. In the present study, 150 locally important plants belonging to 69 families were documented, and the Rosaceae was the most dominant and prevalent family. The results indicated that many locally important plants have multiple uses such as food, medicine, fodder, shelter, ornamental and fuel. The TEMs obtained from these plants have been known to be useful for curing various infirmities such as flu, renal disorders, fever, malaria, cough, migraine, whooping cough, influenza, skin rashes, allergies, stomach aches, wounds and bruises, diabetes, tumours and joint pains. The ICF analysis revealed that renal calculus, malaria, fever, whooping cough, rheumatoid arthritis and arthritis were prevalent infirmities of the mountainous area. The FL analysis indicated the popularity of these plants used in various TEMs and among these Artemisia maritima and Berberis lycium were the most common. The DMR indicated that Pinus roxburghii was the most common species being used for multipurpose by the indigenous communities. The highest use value index was found for Indigofera linifolia. The relative frequency of citations was calculated to determine the importance of plants in traditional ethnomedicine, highlighting Morus nigra, Pinus wallichiana, and Rosa indica as significant species. The Jaccard index indicated a high level of novelty in the research which can be exploited for neo-drug discovery and drug development. In conclusion, this study has successfully documented the ethnobotanically and ethnomedicinally important plants in District Sudhnoti, Azad Jammu and Kashmir, Pakistan. The findings of this research contribute to the preservation and documentation of cultural heritage, as well as provide a foundation for further studies in ethnobotany, ethnopharmacology and biodiversity conservation efforts for sustainable provision of wild flora to the indigenous communities which will also assist in combating drasting climatic changes.


Asunto(s)
Etnobotánica , Medicina Tradicional , Plantas Medicinales , Pakistán/etnología , Humanos , Etnobotánica/métodos , Femenino , Masculino , Medicina Tradicional/métodos , Adulto , Persona de Mediana Edad , Conocimiento , Anciano , Conocimientos, Actitudes y Práctica en Salud
3.
Bot Stud ; 65(1): 20, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995467

RESUMEN

Heavy metals stress particularly cadmium contamination is hotspot among researchers and considered highly destructive for both plants and human health. Iron is examined as most crucial element for plant development, but it is available in inadequate amount because they are present in insoluble Fe3+ form in soil. Fe3O4 have been recently found as growth promoting factor in plants. To understand, a sand pot experiment was conducted in completely randomized design (control, cadmium, 20 mg/L Fe3O4 nanoparticles,40 mg/L Fe3O4 nanoparticles, 20 mg/L Fe3O4 nanoparticles + cadmium, 40 mg/L Fe3O4 nanoparticles + cadmium) to study the mitigating role of Fe3O4 nanoparticles on cadmium stress in three Raphanus sativus cultivars namely i.e., MOL SANO, MOL HOL PARI, MOL DAQ WAL. The plant growth, physiological and biochemical parameters i.e.,shoot length, shoot fresh weight, shoot dry weight, root length, root fresh and dry weight, MDA content, soluble protein contents, APX, CAT, POD activities and ion concentrations, membrane permeability, chlorophyll a, chlorophyll b and anthocyanin content, respectively were studied. The results displayed that cadmium stress remarkably reduces all growth, physiological and biochemical parameters for allcultivars under investigation. However, Fe3O4 nanoparticles mitigated the adverse effect of cadmium by improving growth, biochemical and physiological attributes in all radish cultivars. While, 20 mg/L Fe3O4 nanoparticles have been proved to be more useful against cadmium stress. The outcome of present investigation displayed that Fe3O4 nanoparticles can be utilized for mitigating heavy metal stress.

4.
ACS Appl Mater Interfaces ; 16(29): 37994-38005, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985897

RESUMEN

The commercial viability of emerging lithium-sulfur batteries (LSBs) remains greatly hindered by short lifespans caused by electrically insulating sulfur, lithium polysulfides (Li2Sn; 1 ≤ n ≤ 8) shuttling, and sluggish sulfur reduction reactions (SRRs). This work proposes the utilization of a hybrid composed of sulfiphilic MoS2 and mayenite electride (C12A7:e-) as a cathode host to address these challenges. Specifically, abundant cement-based C12A7:e- is the most stable inorganic electride, possessing the ultimate electrical conductivity and low work function. Through density functional theory simulations, the key aspects of the MoS2/C12A7:e- hybrid including electronic properties, interfacial binding with Li2Sn, Li+ diffusion, and SRR have been unraveled. Our findings reveal the rational rules for MoS2 as an efficient cathode host by enhancing its mutual electrical conductivity and surface polarity via MoS2/C12A7:e-. The improved electrical conductivity of MoS2 is attributed to the electron donation from C12A7:e- to MoS2, yielding a semiconductor-to-metal transition. The resultant band positions of MoS2/C12A7:e- are well matched with those of conventional current-collecting materials (i.e., Cu and Ni), electrochemically enhancing the electronic transport. The accepted charge also intensifies MoS2 surface polarity for attracting polar Li2Sn by forming stronger bonds with Li2Sn via ionic Li-S bonds than electrolytes with Li2Sn, thereby preventing polysulfide shuttling. Importantly, MoS2/C12A7:e- not only promotes rapid reaction kinetics by reducing ionic diffusion barriers but also lowers the Gibbs free energies of the SRR for effective S8-to-Li2S conversion. Beyond the reported applications of C12A7:e-, this work highlights its functionality as an electrode material to boost the efficiency of LSBs.

5.
Small ; : e2402464, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058241

RESUMEN

Volatile organic compound (VOC) sensors have a broad range of applications including healthcare monitoring, product quality control, and air quality management. However, many such applications are demanding, requiring sensors with high sensitivity and selectivity. 2D materials are extensively used in many VOC sensing devices due to their large surface-to-volume ratio and fascinating electronic properties. These properties, along with their exceptional flexibility, low power consumption, room-temperature operation, chemical functionalization potential, and defect engineering capabilities, make 2D materials ideal for high-performance VOC sensing. Here, a 2D MoS2/Te heterojunction is reported that significantly improves the VOC detection compared to MoS2 and Te sensors on their own. Density functional theory (DFT) analysis shows that the MoS2/Te heterojunction significantly enhances the adsorption energy and therefore sensing sensitivity of the sensor. The sensor response, which denotes the percentage change in the sensor's conductance upon VOC exposure, is further enhanced under photo-illumination and zero-bias conditions to values up to ≈7000% when exposed to butanone. The MoS2/Te heterojunction is therefore a promising device architecture for portable and wearable sensing applications.

6.
Life (Basel) ; 14(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38929739

RESUMEN

The production of citric acid, a vital agricultural commodity utilized across various industries such as food, beverages, pharmaceuticals, agriculture, detergents, and cosmetics, predominantly relies on microbial fermentation, with Aspergillus niger accounting for approximately 90% of global production. In this study, we aimed to optimize the key factors influencing citric acid production, with a focus on strains, fermentation techniques, and carbon sources, particularly sugarcane molasses. A. niger, sourced from the Botany department/Biotechnology laboratories at Govt. College of Science, Lahore, was employed for citric acid production. The process involved inoculum preparation through spore collection from 3 to 5 days of cultured PDA slants. The fermentation medium, comprising cane molasses with a 15% sugar concentration, was meticulously prepared and optimized for various factors, including magnesium sulfate, potassium ferrocyanide, time of addition of potassium ferrocyanide, ammonium oxalate, and calcium chloride. Our optimization results shed light on the significant impact of different factors on citric acid production. For instance, the addition of 0.4 g/L magnesium sulfate led to a maximum yield of 75%, while 2 g/L potassium ferrocyanide, added at 24 h, achieved a yield of 78%. Remarkably, ammonium oxalate, at a concentration of 10 g/L, resulted in a notable 77% yield. Conversely, the addition of calcium chloride exhibited negligible effects on citric acid production, with the control group yielding more at 78%. Our study underscores the potential for optimizing factors to enhance citric acid production by A. niger in submerged fermentation. These findings highlight the pivotal role of magnesium sulfate, potassium ferrocyanide, and ammonium oxalate in augmenting citric acid yields while emphasizing the minimal impact of calcium chloride. Ultimately, these insights contribute to advancing our understanding of microbial citric acid biosynthesis, providing valuable implications for industrial applications and future research endeavors.

7.
Phys Chem Chem Phys ; 26(29): 19696-19704, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38835236

RESUMEN

The unique attributes of hydrophilicity, expansive surface groups, remarkable flexibility, and superior conductivity converge in MXene, a pioneering 2D material. Owing to MXene's exceptional properties, diverse strategies have been explored to enhance its characteristics. Janus MXene and stress-strain response considerations represent the primary avenues of interest today. In this study, we investigated the Janus MXene structure under biaxial stress using first-principles calculations. The most stable configuration of Janus MoWC MXene identified in our analysis exhibits an atomic arrangement known as the hexagonal (2H) phase. Subsequently, we examined the mechanical and electronic properties of 2H-MoWC when subjected to biaxial strain. Our findings indicate that the 2H phase of Janus MoWC MXene demonstrates superior strength compared to the tetragonal (1T) phase. Analysis of the ELF of the 2H-MoWC structure unveiled that the robust C-C bond within the material is the underlying factor enabling the 2H phase to withstand a maximum of 9% tensile strain. Furthermore, we demonstrate that 2H-MoWC is a superconductor with the superconducting temperature (Tc) of 1.6 K, and the superconductivity of 2H phase can be enhanced by biaxial strain with the Tc reaching 7 K. This study offers comprehensive insights into the properties of Janus MoWC monolayer under biaxial stress, positioning it as a promising candidate for 2D straintronic applications.

8.
ACS Appl Mater Interfaces ; 16(24): 31363-31371, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38856161

RESUMEN

Being a major obstacle, Ag2Te has always been restricted in p-type AgSbTe2-based materials to improve their thermoelectric performance. This work reveals a stabilized AgSbTe2 through Sn/Ge alloying as synthesized by melting, annealing, and hot press. Interestingly, addition of Sn/Ge in AgSbTe2 extended the solubility limit up to ∼30% and hence suppressed Ag2Te in Ag(1-x)SnxSb(1-y)GeyTe2 compounds and led to enhanced electrical transport. Moreover, electrical and thermal transport properties of AgSbTe2 have been greatly affected by the phase transition of Ag2Te near 425 K. However, high-entropy Ag0.85Sn0.15Sb0.85Ge0.15Te2 compound results in a stabilized rock-salt structure and presents a high power factor of ∼10.8 µW cm-1 K-2 at 757 K. Besides, density functional theory reveals that available multivalence bands in Sn/Ge-doped AgSbTe2 lead to reduction in energy offsets. Meanwhile, a variety of defects appear in the Ag0.85Sn0.15Sb0.85Ge0.15Te2 sample due to entropy change, and thus lattice thermal conductivity decreases. Ultimately, a high figure of merit of ∼1.5 is attained at 757 K. This work demonstrates a roadmap for other group IV-VI materials so that the high-entropy approach may inhibit the impurity phases with extended solubility limit and result in high thermoelectric performance.

9.
Expert Opin Drug Deliv ; 21(5): 779-796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38795359

RESUMEN

BACKGROUND: Controlled and targeted drug delivery to treat nonalcoholic fatty liver disease (NAFLD) can benefit from additive attributes of natural formulation ingredients incorporated into the drug delivery vehicles. METHODS: Lovastatin (LVN) loaded, bile acid (BA) and fatty acid (FA) integrated nanoemulsomes (NES) were formulated by thin layer hydration technique for synergistic and targeted delivery of LVN to treat NAFLD. Organic phase NES was comprised of stearic acid with garlic (GL) and ginger (GR) oils, separately. Ursodeoxycholic acid and linoleic acid were individually incorporated as targeting moieties. RESULTS: Stability studies over 90 days showed average NES particle size, surface charge, polydispersity index, and entrapment efficiency values of 270 ± 27.4 nm, -23.8 ± 3.5 mV, 0.2 ± 0.04 and 81.36 ± 3.4%, respectively. Spherical NES were observed under a transmission electron microscope. In-vitro LVN release depicted non-fickian release mechanisms from GL and GR oils-based NES. Ex-vivo permeation of BA/FA integrated NES through isolated rat intestines showed greater flux than non-integrated ones. CONCLUSION: Liver histopathology of experimental rats together with in-vivo lipid profiles and liver function tests illustrated that these NES possess the clinical potential to be promising drug carriers for NAFLD.


Asunto(s)
Ácidos y Sales Biliares , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Emulsiones , Ácidos Grasos , Lovastatina , Enfermedad del Hígado Graso no Alcohólico , Tamaño de la Partícula , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ratas , Ácidos y Sales Biliares/química , Masculino , Lovastatina/administración & dosificación , Lovastatina/farmacocinética , Lovastatina/química , Ácidos Grasos/química , Ácidos Grasos/administración & dosificación , Nanopartículas/química , Ratas Sprague-Dawley , Portadores de Fármacos/química
10.
Front Vet Sci ; 11: 1351693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681848

RESUMEN

Introduction: The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods: Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results: The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion: The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...