Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 42(9): 5644-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623809

RESUMEN

DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , División del ADN , Inestabilidad Genómica , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Cromosomas Fúngicos/genética , Hibridación Genómica Comparativa , Exodesoxirribonucleasas/metabolismo , Genoma Fúngico , Pérdida de Heterocigocidad , Nucleótidos/biosíntesis , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
2.
Mol Cell Biol ; 27(21): 7745-57, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17724078

RESUMEN

Loss of heterozygosity (LOH), a causal event in tumorigenesis, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms leading to such extensive LOH are poorly understood. We investigated the mechanisms of DNA double-strand break (DSB)-induced extensive LOH by screening for auxotrophic marker loss approximately 25 kb distal to an HO endonuclease break site within a nonessential minichromosome in Schizosaccharomyces pombe. Extensive break-induced LOH was infrequent, resulting from large translocations through both allelic crossovers and break-induced replication. These events required the homologous recombination (HR) genes rad32(+), rad50(+), nbs1(+), rhp51(+), rad22(+), rhp55(+), rhp54(+), and mus81(+). Surprisingly, LOH was still observed in HR mutants, which resulted predominantly from de novo telomere addition at the break site. De novo telomere addition was most frequently observed in rad22Delta and rhp55Delta backgrounds, which disrupt HR following end resection. Further, levels of de novo telomere addition, while increased in ku70Delta rhp55Delta strains, were reduced in exo1Delta rhp55Delta and an rhp55Delta strain overexpressing rhp51. These findings support a model in which HR prevents de novo telomere addition at DSBs by competing for resected ends. Together, these results suggest that the mechanisms of break-induced LOH may be predicted from the functional status of the HR machinery.


Asunto(s)
Roturas del ADN de Doble Cadena , Pérdida de Heterocigocidad/genética , Recombinación Genética , Schizosaccharomyces/genética , Telómero/metabolismo , Translocación Genética , Alelos , Secuencia de Bases , Cromosomas Fúngicos/metabolismo , Intercambio Genético , Reparación del ADN , Marcadores Genéticos , Modelos Genéticos , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Mutación/genética , Filogenia , Recombinasa Rad51/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
EMBO J ; 22(6): 1419-30, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12628934

RESUMEN

We have examined the genetic requirements for efficient repair of a site-specific DNA double-strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch(16), using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51(+), rad22A(+), rad32(+) and the nucleotide excision repair gene rad16(+) were required for efficient interchromosomal gene conversion. Further, DSB-induced cell cycle delay and efficient HR required the DNA integrity checkpoint gene rad3(+). Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55Delta background involving ku70(+) and rhp51(+). Surprisingly, DSB-induced minichromosome loss was significantly reduced in ku70Delta and lig4Delta non-homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identified in suppressing DSB-induced chromosomal rearrangements associated with gene conversion. These findings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.


Asunto(s)
Daño del ADN , Reparación del ADN/genética , ADN de Hongos/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas Fúngicas/metabolismo , Schizosaccharomyces/genética , Cromosomas Fúngicos , ADN de Hongos/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Proteínas Fúngicas/genética , Rayos gamma , Conversión Génica , Genes Fúngicos , Modelos Biológicos , Mutación , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...