Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 20(8): e202201249, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37358062

RESUMEN

In the current study, both the essential oil composition and biological activity of Saussurea lappa and Ligusticum sinensis were investigated by means of microwave-assisted hydrodistillation (MAHD) and characterized by Gas chromatography/mass spectrometry (GC/MS), whereas the antimicrobial efficiency of MAHD essential oils was examined against four pathogens: Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Candida albicans responsible for microbial infections. The goal was to spot synergy and a favorable method that gives essential oils to possibly use as alternatives to common antimicrobial agents for the treatment of bacterial infections using a microdilution assay. S. lappa's 21 compounds were characterized by MAHD extraction. Sesquiterpene lactones (39.7 % MAHD) represented the major components, followed by sesquiterpene dialdehyde (25.50 % MAHD), while L. sinensis's 14 compounds were identified by MAHD extraction. Tetrahydroisobenzofurans (72.94 % MAHD) was the predominant compound class. S. lappa essential oil collection showed the strongest antimicrobial activity with MIC values of 16 µg/ml against all pathogens tested, while L. sinensis showed strong antibacterial activity and moderate antifungal activity with MIC values of 32 µg/ml and 500 µg/ml, respectively. The principal components of both oils, (velleral, eremanthin and neocnidilide), were docked into the bacterial histidine kinase (HK) and the fungal heat shock protein 90 (Hsp90).


Asunto(s)
Antiinfecciosos , Ligusticum , Aceites Volátiles , Saussurea , Sesquiterpenos , Aceites Volátiles/química , Simulación del Acoplamiento Molecular , Microondas , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
Mar Drugs ; 20(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286454

RESUMEN

Soft corals are recognized as an abundant source of diverse secondary metabolites with unique chemical features and physiologic capabilities. However, the discovery of these metabolites is usually hindered by the traditional protocol which requires a large quantity of living tissue for isolation and spectroscopic investigations. In order to overcome this problem, untargeted metabolomics protocols have been developed. The latter have been applied here to study the chemodiversity of common Egyptian soft coral species, using only minute amounts of coral biomass. Spectral similarity networks, based on high-resolution tandem mass spectrometry data, were employed to explore and highlight the metabolic biodiversity of nine Egyptian soft coral species. Species-specific metabolites were highlighted for future prioritization of soft coral species for MS-guided chemical investigation. Overall, 79 metabolites were tentatively assigned, encompassing diterpenes, sesquiterpenes, and sterols. Simultaneously, the methodology assisted in shedding light on newly-overlooked chemical diversity with potential undescribed scaffolds. For instance, glycosylated fatty acids, nitrogenated aromatic compounds, and polyketides were proposed in Sinularia leptoclados, while alkaloidal terpenes and N-acyl amino acids were proposed in both Sarcophyton roseum and Sarcophyton acutum.


Asunto(s)
Antozoos , Diterpenos , Policétidos , Sesquiterpenos , Animales , Océano Índico , Egipto , Antozoos/química , Metaboloma , Diterpenos/química , Esteroles/metabolismo , Terpenos/metabolismo , Policétidos/metabolismo , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Catalogación
3.
Phytomedicine ; 100: 154019, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35325826

RESUMEN

BACKGROUND: In the pharmaceutical sector, tissue culture techniques for large-scale production of natural chemicals can be a less expensive alternative to large-scale synthesis. Although recent biotransformation research have used plant cell cultures to target a wide range of bioactive compounds, more compiled information and synopses are needed to better understand metabolic pathways and improve biotransformation efficiencies. PURPOSE: This report reviews the biochemical transformation of phenolic natural products by plant cell cultures in order to identify potential novel biotechnological approaches for ensuring more homogeneous and stable phenolic production year-round under controlled environmental conditions. METHODS: Articles on the use of plant cell culture for polyphenolic and flavonoid transformations (1988 - 2021) were retrieved from SciFinder, PubMed, Scopus, and Web of Science through electronic and manual search in English. Following that, the authors chose the required papers based on the criteria they defined. The following keywords were used for the online search: biotransformation, Plant cell cultures, flavonoids, phenolics, and pharmaceutical products. RESULTS: The initial search found a total of 96 articles. However, only 70 of them were selected as they met the inclusion criteria defined by the authors. The analysis of these studies revealed that plant tissue culture is applicable for the large-scale production of plant secondary metabolites including the phenolics, which have high therapeutic value. CONCLUSION: Plant tissue cultures could be employed as an efficient technique for producing secondary metabolites including phenolics. Phenolics possess a wide range of therapeutic benefits, as anti-oxidant, anti-cancer, and anti-inflammatory properties. Callus culture, suspension cultures, transformation, and other procedures have been used to improve the synthesis of phenolics. Their production on a large scale is now achievable. More breakthroughs will lead to newer insights and, without a doubt, to a new era of phenolics-based pharmacological agents for the treatment of a variety of infectious and degenerative disorders.


Asunto(s)
Flavonoides , Fenoles , Antioxidantes/metabolismo , Técnicas de Cultivo de Célula , Flavonoides/análisis , Fenoles/análisis , Plantas/metabolismo
4.
Molecules ; 26(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916714

RESUMEN

Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the southwestern Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to chemically characterize the plant. From the aerial parts, two newly identified guaianolides were isolated: 3ß-hydroxy-4α(acetoxy)-4ß(hydroxymethyl)-8α-(4-hydroxy methacrylate)-1αH,5αH, 6αH-gual-10(14),11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2). Seven previously reported compounds were also isolated: 3ß, 4α, 8α-trihydroxy-4-(hydroxymethyl)-lαH, 5αH, 6ßH, 7αH-guai-10(14),11(13)-dien-6,12-olide (3), chlorohyssopifolin B (4), cynaropikrin (5), hydroxyjanerin (6), chlorojanerin (7), isorhamnetin (8), and quercetagetin-3,6-dimethyl ether-4'-O-ß-d-pyranoglucoside (9). Chemical structures were elucidated using spectroscopic techniques, including High Resolution Fast Atom Bombardment Mass Spectrometry (HR-FAB-MS), 1D NMR; 1H, 13C NMR, Distortionless Enhancement by Polarization Transfer (DEPT), and 2D NMR (1H-1H COSY, HMQC, HMBC) analyses. In addition, a biosynthetic pathway for compounds 1-9 is proposed. The chemotaxonomic significance of the reported sesquiterpenoids and flavonoids considering reports from other Centaurea species is examined.


Asunto(s)
Asteraceae/química , Lactonas/aislamiento & purificación , Sesquiterpenos de Guayano/aislamiento & purificación , Vías Biosintéticas , Espectroscopía de Resonancia Magnética con Carbono-13 , Flavonas/química , Flavonas/aislamiento & purificación , Lactonas/química , Conformación Molecular , Espectroscopía de Protones por Resonancia Magnética , Sesquiterpenos de Guayano/química
5.
Comput Biol Med ; 126: 104046, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33065388

RESUMEN

Coronavirus Disease 2019 (COVID-19) is an infectious illness caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), originally identified in Wuhan, China (December 2019) and has since expanded into a pandemic. Here, we investigate metabolites present in several common spices as possible inhibitors of COVID-19. Specifically, 32 compounds isolated from 14 cooking seasonings were examined as inhibitors for SARS-CoV-2 main protease (Mpro), which is required for viral multiplication. Using a drug discovery approach to identify possible antiviral leads, in silico molecular docking studies were performed. Docking calculations revealed a high potency of salvianolic acid A and curcumin as Mpro inhibitors with binding energies of -9.7 and -9.2 kcal/mol, respectively. Binding mode analysis demonstrated the ability of salvianolic acid A and curcumin to form nine and six hydrogen bonds, respectively with amino acids proximal to Mpro's active site. Stabilities and binding affinities of the two identified natural spices were calculated over 40 ns molecular dynamics simulations and compared to an antiviral protease inhibitor (lopinavir). Molecular mechanics-generalized Born surface area energy calculations revealed greater salvianolic acid A affinity for the enzyme over curcumin and lopinavir with energies of -44.8, -34.2 and -34.8 kcal/mol, respectively. Using a STRING database, protein-protein interactions were identified for salvianolic acid A included the biochemical signaling genes ACE, MAPK14 and ESR1; and for curcumin, EGFR and TNF. This study establishes salvianolic acid A as an in silico natural product inhibitor against the SARS-CoV-2 main protease and provides a promising inhibitor lead for in vitro enzyme testing.


Asunto(s)
Betacoronavirus/enzimología , Ácidos Cafeicos/química , Infecciones por Coronavirus/tratamiento farmacológico , Curcumina/química , Cisteína Endopeptidasas , Descubrimiento de Drogas , Lactatos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , COVID-19 , Ácidos Cafeicos/uso terapéutico , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/enzimología , Curcumina/uso terapéutico , Cisteína Endopeptidasas/química , Humanos , Lactatos/uso terapéutico , Pandemias , Neumonía Viral/enzimología , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2 , Termodinámica , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química
6.
Molecules ; 25(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384789

RESUMEN

Genus Stachys, the largest genera of the family Lamiaceae, and its species are frequently used as herbal teas due to their essential oils. Tubers of some Stachys species are also consumed as important nutrients for humans and animals due to their carbohydrate contents. Three new neo-clerodane diterpene peroxides, named stachaegyptin F-H (1, 2, and 4), together with two known compounds, stachysperoxide (3) and stachaegyptin A (5), were isolated from Stachys aegyptiaca aerial parts. Their structures were determined using a combination of spectroscopic techniques, including HR-FAB-MS and extensive 1D and 2D NMR (1H, 13C NMR, DEPT, 1H-1H COSY, HMQC, HMBC and NOESY) analyses. Additionally, a biosynthetic pathway for the isolated compounds (1-5) was discussed. The chemotaxonomic significance of the isolated diterpenoids of S. aegyptiaca in comparison to the previous reported ones from other Stachys species was also studied.


Asunto(s)
Diterpenos de Tipo Clerodano/análisis , Fitoquímicos/análisis , Componentes Aéreos de las Plantas/química , Extractos Vegetales/análisis , Stachys/química , Vías Biosintéticas , Clasificación , Diterpenos/análisis , Diterpenos/aislamiento & purificación , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Peróxidos/análisis , Peróxidos/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Tés de Hierbas/análisis
7.
Crit Rev Biotechnol ; 40(1): 64-82, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31663377

RESUMEN

Structurally diverse natural products are valued for their targeted biological activity. The challenge of working with such metabolites is their low natural abundance and complex structure, often with multiple stereocenters, precludes large-scale or unsophisticated chemical synthesis. Since select plants contain the enzymatic machinery necessary to produce specialized compounds, tissue cultures can be used to achieve key transformations for large-scale chemical and/or pharmaceutical applications. In this context, plant tissue-culture bio-transformations have demonstrated great promise in the preparation of pharmaceutical products. This review describes the capacity of cultured plant cells to transform terpenoid natural products and the specific application of such transformations over the past three decades (1988-2019).


Asunto(s)
Plantas/metabolismo , Terpenos/metabolismo , Biotransformación , Técnicas de Cultivo de Célula , Estructuras de las Plantas/metabolismo
8.
Fitoterapia ; 130: 54-60, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30114467

RESUMEN

Diterpenoids salvimulticanol (1) and salvimulticaoic acid (2) together with known diterpenoid (3-6) were isolated from Salvia multicaulis. Structures were elucidated by spectroscopic techniques including HRESIMS as well as 1D-, and 2D-NMR. In-vitro cytotoxicity was assayed against human cancer cell lines. As several metabolites exhibited activity against drug-resistance lines, compounds were screened against a panel of human drug-sensitive and multidrug-resistant cancer lines. A proposed biosynthetic pathway for these new diterpenoids (1-2) as well as the cytotoxic structure-activity relationship of all identified compounds were discussed. Compound 1 and 6 showed the most potent cytotoxicity with IC50 11.58 and 4.13 towards leukemia cell lines CCRF-CEM and CEM-ADR5000, respectively.


Asunto(s)
Abietanos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Salvia/química , Línea Celular Tumoral , Egipto , Humanos , Estructura Molecular , Fitoquímicos/farmacología , Componentes Aéreos de las Plantas/química
9.
J Asian Nat Prod Res ; 19(3): 201-207, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27314549

RESUMEN

Three new cembrenoids, lobophylins F-H (1-3), along with three known ones, lobophylins A-C (4-6), were isolated from the ethyl acetate extract of the Taiwan water soft coral Lobophytum crassum. The structures of isolated cembrenoids were elucidated on the basis of extensive spectroscopic methods such as IR, 1D, 2D NMR and HR-ESI-MS.


Asunto(s)
Antozoos/química , Diterpenos/aislamiento & purificación , Animales , Diterpenos/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Taiwán
10.
Pharmacognosy Res ; 2(3): 159-62, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-21808559

RESUMEN

Phytochemical studies of the aerial parts of Euphorbia rigida afforded three triterpenes: betulin (1), cycloart-23Z-ene-3, 25-diol (2) and cycloartan-3, 24, 25-triol (3), firstly isolated from this plant. The structures and relative stereochemistry were determined on the basis of extensive spectroscopic analyses, including 1D and 2D NMR experiments (1H NMR, 13C NMR, COSY, NOESY, HMQC and HMBC).

11.
Pharmacognosy Res ; 2(4): 229-32, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21808572

RESUMEN

BACKGROUND: The genus Bersama belongs to the Melianthaceae family and comprises of four species (B. swinnyi, B. yangambiensis, B. abyssinica, and B. engleriana) all of which are very high trees; the latter two detected species are found in Cameroon. Previous phytochemical investigation on B. yangambiensis, B. swinnyi, and B. abyssinica led to the isolation of triterpenes, saponins, flavonoids, and xanthones. METHOD: The stem bark of B. engleriana were collected in the village, Baham near Bafoussam city, Cameroon in August 2003 and identifi ed by Dr. Onana National Herbaruim, Yaoundι, Cameroon. The air dried and powdered stem bark of B. engleriana (1 kg) was extracted at room temperature with CH2Cl2-MeOH (1:1) 5 L for 48 hours. The mixture of the solvent was removed by evaporation to yield 200 g of crude extract. The latter was then dissolved in CH2Cl2 to give the CH2Cl2 soluble fraction of 5 g and a remaining gum of 195 g. Part of the remaining gum (22 g) was dissolved in water and extracted four times with butanol to give 12 g of red oil; which was then separated by paper chromatography, with butanol-acetic acid-water (4:1:5), to give 3 g of orange gum; purification was carried out on HPLC with MeOH (100%) to yield 2 g of mangiferin (1) as red oil. The CH2Cl2 soluble extract was eluted on silica gel n-hexane-CH2Cl2 gradient ratio and Sephadex LH-20 (n-hexane -CH2Cl2 -MeOH, (7:4:0.5) to afford compounds swinniol (2), Δ4-stigmaster-3ß-ol (3), 4-methylstigmaster-5,23-dien-3ß-ol(4). RESULTS: Herein, we carried out a phytochemical study of the stem bark of B. engleriana, and we report herein the isolation and structural elucidation of mangiferin, in addition to three triterpenes, previously reported from other species of the genus.[35] The assignment of the signals of mangiferin was determined using 1H, 13C-NMR, and 2D-NMR spectral data (HMQC, COSY, HMBC). The terpenoids were identifi ed by comparison of their 1H and 13C-NMR spectra with the literature data. Fractionation of the CH2Cl2-MeOH (1:1) extract of the stem bark of B. engleriana Guike gave mangiferin (1), in addition to three previously reported triterpenes, swinniol (2), Δ4-stigmaster-3ß-ol (3), and 4-methylstigmaster-5,23-dien-3-ß-ol (4). CONCLUSIONS: A chemical investigation of the CH2Cl2-MeOH extract of the stem bark of Bersama engleriana afforded a xanthone C-glucoside (mangiferin) and fi rst isolation of three terpenoids from this species: swinniol (2), Δ4-stigmaster-3ß-ol (3), and 4-methylstigmaster-5,23-dien-3-ß-ol (4). The complete 1H and 13C chemical shift assignments of mangiferin were determined using 1D and 2D NMR spectroscopic data (COSY, HMQC, HMBC, DEPT). The structures of the terpenoids were determined from their 1H and 13C NMR data and compared with the literature data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...