Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586009

RESUMEN

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of Nups in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.

2.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37781618

RESUMEN

Eukaryotic viruses assemble compartments required for genome replication, but no such organelles are known to be essential for prokaryotic viruses. Bacteriophages of the family Chimalliviridae sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of viral protein ChmA. Using the dRfxCas13d-based knockdown system CRISPRi-ART, we show that ChmA is essential for the E. coli phage Goslar life cycle. Without ChmA, infections are arrested at an early stage in which the injected phage genome is enclosed in a membrane-bound vesicle capable of gene expression but not DNA replication. Not only do we demonstrate that the phage nucleus is essential for genome replication, but we also show that the Chimalliviridae early phage infection (EPI) vesicle is a transcriptionally active, phage-generated organelle.

3.
J Phys Chem B ; 127(8): 1771-1779, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795462

RESUMEN

Living cells feature lipid compartments which exhibit a variety of shapes and structures that assist essential cellular processes. Many natural cell compartments frequently adopt convoluted nonlamellar lipid architectures that facilitate specific biological reactions. Improved methods for controlling the structural organization of artificial model membranes would facilitate investigations into how membrane morphology affects biological functions. Monoolein (MO) is a single-chain amphiphile which forms nonlamellar lipid phases in aqueous solution and has wide applications in nanomaterial development, the food industry, drug delivery, and protein crystallization. However, even if MO has been extensively studied, simple isosteres of MO, while readily accessible, have seen limited characterization. An improved understanding of how relatively minor changes in lipid chemical structure affect self-assembly and membrane topology could instruct the construction of artificial cells and organelles for modeling biological structures and facilitate nanomaterial-based applications. Here, we investigate the differences in self-assembly and large-scale organization between MO and two MO lipid isosteres. We show that replacing the ester linkage between the hydrophilic headgroup and hydrophobic hydrocarbon chain with a thioesther or amide functional group results in the assembly of lipid structures with different phases not resembling those formed by MO. Using light and cryo-electron microscopy, small-angle X-ray scattering, and infrared spectroscopy, we demonstrate differences in the molecular ordering and large-scale architectures of the self-assembled structures made from MO and its isosteric analogues. These results improve our understanding of the molecular underpinnings of lipid mesophase assembly and may facilitate the development of MO-based materials for biomedicine and as model lipid compartments.


Asunto(s)
Glicéridos , Proteínas , Microscopía por Crioelectrón , Glicéridos/química , Cristalización
4.
Faraday Discuss ; 240(0): 101-113, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35924570

RESUMEN

Cryo-electron tomography (cryo-ET) with subtomogram averaging (STA) has emerged as a key tool for determining macromolecular structure(s) in vitro and in situ. However, processing cryo-ET data with STA currently requires significant user expertise. Recent efforts have streamlined several steps in STA workflows; however, particle picking remains a time-consuming bottleneck for many projects and requires considerable user input. Here, we present several strategies for the time-efficient and accurate picking of membrane-associated particles using the COPII inner coat as a case study. We also discuss a range of particle cleaning solutions to remove both poor quality and false-positive particles from STA datasets. We provide a step-by-step guide and the necessary scripts for users to independently carry out the particle picking and cleaning strategies discussed.


Asunto(s)
Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador , Microscopía por Crioelectrón/métodos , Flujo de Trabajo , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía con Microscopio Electrónico/métodos
5.
EMBO J ; 41(3): e109728, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34935163

RESUMEN

Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.


Asunto(s)
Virus Sincitial Respiratorio Humano/ultraestructura , Envoltura Viral/ultraestructura , Proteínas de la Matriz Viral/química , Células A549 , Animales , Chlorocebus aethiops , Glicoproteínas/química , Humanos , Conformación Proteica en Hélice alfa , Virus Sincitial Respiratorio Humano/química , Células Vero , Envoltura Viral/química
6.
Nat Commun ; 12(1): 2034, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795673

RESUMEN

COPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera
7.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32997735

RESUMEN

Protein secretion is initiated at the endoplasmic reticulum by the COPII coat, which self-assembles to form vesicles. Here, we examine the mechanisms by which a cargo-bound inner coat layer recruits and is organized by an outer scaffolding layer to drive local assembly of a stable structure rigid enough to enforce membrane curvature. An intrinsically disordered region in the outer coat protein, Sec31, drives binding with an inner coat layer via multiple distinct interfaces, including a newly defined charge-based interaction. These interfaces combinatorially reinforce each other, suggesting coat oligomerization is driven by the cumulative effects of multivalent interactions. The Sec31 disordered region could be replaced by evolutionarily distant sequences, suggesting plasticity in the binding interfaces. Such a multimodal assembly platform provides an explanation for how cells build a powerful yet transient scaffold to direct vesicle traffic.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
8.
Curr Opin Cell Biol ; 59: 104-111, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125831

RESUMEN

Membrane trafficking in eukaryotic cells is a highly dynamic process, which needs to adapt to a variety of cargo proteins. The COPII coat mediates ER export of thousands of proteins with a wide range of sizes by generating coated membrane vesicles that incapsulate cargo. The process of assembly and disassembly of COPII, regulated by GTP hydrolysis, is a major determinant of the size and shape of transport carriers. Here, we analyse our knowledge of the COPII coat architecture and it assembly/disassembly dynamics, and link coat flexibility to the role of COPII in transport of large cargoes. We propose a common mechanism of action of regulatory factors that modulate COPII GTP hydrolysis cycle to promote budding.


Asunto(s)
Vías Secretoras , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Modelos Biológicos , Transporte de Proteínas
10.
Nat Commun ; 9(1): 4154, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297805

RESUMEN

Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are unclear. Here we present a 4.9 Å cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13-Sec31) bridges inner coat subunits (Sar1-Sec23-Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Membrana Celular/química , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas de Transporte de Membrana/genética , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera
11.
Biochem Soc Trans ; 46(4): 807-816, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29934301

RESUMEN

Cryo-electron tomography (CET) is uniquely suited to obtain structural information from a wide range of biological scales, integrating and bridging knowledge from molecules to cells. In particular, CET can be used to visualise molecular structures in their native environment. Depending on the experiment, a varying degree of resolutions can be achieved, with the first near-atomic molecular structures becoming recently available. The power of CET has increased significantly in the last 5 years, in parallel with improvements in cryo-EM hardware and software that have also benefited single-particle reconstruction techniques. In this review, we cover the typical CET pipeline, starting from sample preparation, to data collection and processing, and highlight in particular the recent developments that support structural biology in situ We provide some examples that highlight the importance of structure determination of molecules embedded within their native environment, and propose future directions to improve CET performance and accessibility.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Animales , Computadores , Microscopía por Crioelectrón/instrumentación , Recolección de Datos , Tomografía con Microscopio Electrónico/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador , Estructura Molecular , Diseño de Software
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA