Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(11): 18572-18581, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859010

RESUMEN

Brillouin spectrometers, used for characterizing material mechanical properties, traditionally employ etalons such as Fabry-Pérot interferometers and virtually imaged phased arrays (VIPA) that use spatial dispersion of the spectrum for measurement. Here, we introduce what we believe to be a novel approach to Brillouin spectroscopy using hot atomic vapors. Using laser induced circular dichroism of the rubidium D2 line in a ladder-type configuration, we developed a narrow-band monochromator for Brillouin analysis. Unlike etalon-based spectrometers, atomic line monochromators operate in free-space, facilitating Brillouin spectroscopy integration with microscopy instruments. We report the transmission and spectral resolution performances of the spectrometer and demonstrate Brillouin spectra measurements in liquids.

2.
Opt Express ; 31(3): 4334-4346, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785404

RESUMEN

Spectral imaging techniques extract spectral information using dispersive elements in combination with optical microscopes. For rapid acquisition, multiplexing spectral information along one dimension of imaged pixels has been demonstrated in hyperspectral imaging, as well as in Raman and Brillouin imaging. Full-field spectroscopy, i.e., multiplexing where imaged pixels are collected in 2D simultaneously while spectral analysis is performed sequentially, can increase spectral imaging speed, but so far has been attained at low spectral resolutions. Here, we extend 2D multiplexing to high spectral resolutions of ∼80 MHz (∼0.0001 nm) using high-throughput spectral discrimination based on atomic transitions.

3.
Nano Lett ; 18(8): 4943-4948, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30016110

RESUMEN

Two-photon microscopy is a key imaging technique in life sciences due to its superior deep-tissue imaging capabilities. Light-weight and compact two-photon microscopes are of great interest because of their applications for in vivo deep brain imaging. Recently, dielectric metasurfaces have enabled a new category of small and lightweight optical elements, including objective lenses. Here we experimentally demonstrate two-photon microscopy using a double-wavelength metasurface lens. It is specifically designed to focus 820 and 605 nm light, corresponding to the excitation and emission wavelengths of the measured fluorophors, to the same focal distance. The captured two-photon images are qualitatively comparable to the ones taken by a conventional objective lens. Our metasurface lens can enable ultracompact two-photon microscopes with similar performance compared to current systems that are usually based on graded-index-lenses. In addition, further development of tunable metasurface lenses will enable fast axial scanning for volumetric imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...