Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Front Insect Sci ; 4: 1465829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39417087

RESUMEN

The Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), an invasive species from northern Japan, was first detected in Minnesota in 1968. According to fruit growers and the Minnesota Department of Agriculture, population size and feeding damage has been an increasing concern since 2010. Based on trap-catch data, populations have recently exceeded 4,000 beetles/trap/week during July-August near raspberry fields, and can increase by an order of magnitude within 7-10 days. The primary goals of this study were to assess the spatial distribution of P. japonica adults in raspberry, and to develop and validate a practical fixed-precision sequential sampling plan for grower use. Taylor's Power Law (TPL) regression was used to characterize the beetle's spatial pattern in research plots and commercial fields, either with or without insecticide applications. We then used Green's plan to develop an enumerative sequential sampling plan to estimate P. japonica density in primocane raspberry. Beetle population data were collected at two locations in southern Minnesota, including the Rosemount Research and Outreach Center, and a commercial field near Forest Lake. The TPL results, via slope comparisons, indicated no significant differences in P. japonica spatial pattern between insecticide treated plots versus untreated plots, or among 4 different insecticides (P>0.05). Utilizing all spatial pattern data, we characterized the distribution of P. japonica beetles to be highly aggregated in raspberry, with TPL slopes ranging from b = 1.38 to 1.55; all slopes were found to be >1.0. Although the slopes were not significantly different, we accounted for variability in spatial pattern by using 33 independent data sets, and the Resampling for Validation of Sampling Plans (RVSP) model to validate a sampling plan with a final average precision level of 0.25 (SEM/mean), recommended for integrated pest management (IPM) purposes. The final sampling plan required an average sample number of only 15, 1-m-row samples, while providing high relative net precision (RNP), and thus a cost-effective, efficient sample plan for growers.

2.
Science ; 385(6713): eadn3747, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236181

RESUMEN

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.


Asunto(s)
Agricultura , Cambio Climático , Gases de Efecto Invernadero , Productos Agrícolas/crecimiento & desarrollo , Ambiente , Agroquímicos , Suelo/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-39136363

RESUMEN

BACKGROUND: A randomized trial suggested that reducing left-sided subthalamic stimulation amplitude could improve axial dysfunction. OBJECTIVES: To explore open-label tolerability and associations between trial outcomes and asymmetry data. METHODS: We collected adverse events in trial participants treated with open-label lateralized settings for ≥3 months. We explored associations between trial outcomes, location of stimulation and motor asymmetry. RESULTS: 14/17 participants tolerated unilateral amplitude reduction (left-sided = 10, right-sided = 4). Two hundred eighty-four left-sided and 1113 right-sided stimulated voxels were associated with faster gait velocity, 81 left-sided and 22 right-sided stimulated voxels were associated with slower gait velocity. Amplitude reduction contralateral to shorter step length was associated with 2.4-point reduction in axial MDS-UPDRS. Reduction contralateral to longer step length was associated with 10-point increase in MDS-UPDRS. CONCLUSIONS: Left-sided amplitude reduction is potentially more tolerable than right-sided amplitude reduction. Right-sided more than left-sided stimulation could be associated with faster gait velocity. Shortened step length might reflect contralateral overstimulation.

4.
Neurobiol Dis ; 199: 106557, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852752

RESUMEN

BACKGROUND: Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) characterized by paroxysmal episodes in which patients are unable to step forward. A research priority is identifying cortical changes before freezing in PD-FOG. METHODS: We tested 19 patients with PD who had been assessed for FOG (n=14 with FOG and 5 without FOG). While seated, patients stepped bilaterally on pedals to progress forward through a virtual hallway while 64-channel EEG was recorded. We assessed cortical activities before and during lower limb motor blocks (LLMB), defined as a break in rhythmic pedaling, and stops, defined as movement cessation following an auditory stop cue. This task was selected because LLMB correlates with FOG severity in PD and allows recording of high-quality EEG. Patients were tested after overnight withdrawal from dopaminergic medications ("off" state) and in the "on" medications state. EEG source activities were evaluated using individual MRI and standardized low resolution brain electromagnetic tomography (sLORETA). Functional connectivity was evaluated by phase lag index between seeds and pre-defined cortical regions of interest. RESULTS: EEG source activities for LLMB vs. cued stops localized to right posterior parietal area (Brodmann area 39), lateral premotor area (Brodmann area 6), and inferior frontal gyrus (Brodmann area 47). In these areas, PD-FOG (n=14) increased alpha rhythms (8-12 Hz) before LLMB vs. typical stepping, whereas PD without FOG (n=5) decreased alpha power. Alpha rhythms were linearly correlated with LLMB severity, and the relationship became an inverted U-shape when assessing alpha rhythms as a function of percent time in LLMB in the "off" medication state. Right inferior frontal gyrus and supplementary motor area connectivity was observed before LLMB in the beta band (13-30 Hz). This same pattern of connectivity was seen before stops. Dopaminergic medication improved FOG and led to less alpha synchronization and increased functional connections between frontal and parietal areas. CONCLUSIONS: Right inferior parietofrontal structures are implicated in PD-FOG. The predominant changes were in the alpha rhythm, which increased before LLMB and with LLMB severity. Similar connectivity was observed for LLMB and stops between the right inferior frontal gyrus and supplementary motor area, suggesting that FOG may be a form of "unintended stopping." These findings may inform approaches to neurorehabilitation of PD-FOG.


Asunto(s)
Electroencefalografía , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/tratamiento farmacológico , Masculino , Femenino , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/etiología , Anciano , Electroencefalografía/métodos , Persona de Mediana Edad , Extremidad Inferior/fisiopatología , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética
5.
Neuroimage ; 296: 120686, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871037

RESUMEN

Centromedian nucleus (CM) is one of several intralaminar nuclei of the thalamus and is thought to be involved in consciousness, arousal, and attention. CM has been suggested to play a key role in the control of attention, by regulating the flow of information to different brain regions such as the ascending reticular system, basal ganglia, and cortex. While the neurophysiology of attention in visual and auditory systems has been studied in animal models, combined single unit and LFP recordings in human have not, to our knowledge, been reported. Here, we recorded neuronal activity in the CM nucleus in 11 patients prior to insertion of deep brain stimulation electrodes for the treatment of epilepsy while subjects performed an auditory attention task. Patients were requested to attend and count the infrequent (p = 0.2) odd or "deviant" tones, ignore the frequent standard tones and report the total number of deviant tones at trial completion. Spikes were discriminated, and LFPs were band pass filtered (5-45 Hz). Average peri­stimulus time histograms and spectra were constructed by aligning on tone onsets and statistically compared. The firing rate of CM neurons showed selective, multi-phasic responses to deviant tones in 81% of the tested neurons. Local field potential analysis showed selective beta and low gamma (13-45 Hz) modulations in response to deviant tones, also in a multi-phasic pattern. The current study demonstrates that CM neurons are under top-down control and participate in the selective processing during auditory attention and working memory. These results, taken together, implicate the CM in selective auditory attention and working memory and support a role of beta and low gamma oscillatory activity in cognitive processes. It also has potential implications for DBS therapy for epilepsy and non-motor symptoms of PD, such as apathy and other disorders of attention.


Asunto(s)
Atención , Percepción Auditiva , Núcleos Talámicos Intralaminares , Memoria a Corto Plazo , Neuronas , Humanos , Atención/fisiología , Masculino , Femenino , Memoria a Corto Plazo/fisiología , Adulto , Percepción Auditiva/fisiología , Núcleos Talámicos Intralaminares/fisiología , Persona de Mediana Edad , Neuronas/fisiología , Adulto Joven , Estimulación Acústica , Estimulación Encefálica Profunda/métodos
6.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561111

RESUMEN

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Asunto(s)
Estimulación Acústica , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Porción Reticular de la Sustancia Negra , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Masculino , Persona de Mediana Edad , Femenino , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Anciano , Porción Reticular de la Sustancia Negra/fisiología , Estimulación Encefálica Profunda/métodos , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Sustancia Negra/fisiología , Adulto
7.
Environ Entomol ; 53(3): 487-497, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38632973

RESUMEN

Insect migrations have ecological and economic impacts, particularly in agriculture. However, there is limited knowledge about the migratory movements of pests at the continental scale, which is an important factor influencing the spread of resistance genes. Understanding the migratory patterns of economic pests, like Helicoverpa zea (Boddie), is essential for improving Integrated Pest Management (IPM) and Insect Resistance Management (IRM) strategies. In this study, we used stable hydrogen isotopic ratios in wing tissue as a biogeochemical marker to examine migratory patterns and estimate the native origins of H. zea individuals collected across a wide latitudinal gradient in North America. Samples collected at higher latitudes (Ontario, Canada and Minnesota, USA) exhibited a greater proportion (60%-96%) of nonlocal individuals, with an increased probability of origin from the southeastern United States. Populations from mid-latitudes (Florida, North Carolina, and South Carolina) showed a blend of local and nonlocal (40%-60%) individuals. Finally, 15% of the southernmost population individuals (Puerto Rico) were classified as migratory, with some having a probability of origin at higher latitudes (>30°). Overall, our results provide evidence of a northward spring/summer migration of H. zea in North America and underscore the significance of the southeastern United States as a hub for genetic flow. In addition, based on stable hydrogen isotopic ratios, there is strong evidence of reverse (southward) migration of H. zea from the continental United States to Puerto Rico. Our study highlights the implications for IPM and IRM programs and the need for management strategies that account for both northward and southward migration patterns.


Asunto(s)
Migración Animal , Mariposas Nocturnas , Animales , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/genética , Alas de Animales , Femenino
8.
Neuromodulation ; 27(3): 464-475, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37140523

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) is an effective treatment for movement disorders, including Parkinson disease and essential tremor. However, the underlying mechanisms of DBS remain elusive. Despite the capability of existing models in interpreting experimental data qualitatively, there are very few unified computational models that quantitatively capture the dynamics of the neuronal activity of varying stimulated nuclei-including subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), and ventral intermediate nucleus (Vim)-across different DBS frequencies. MATERIALS AND METHODS: Both synthetic and experimental data were used in the model fitting; the synthetic data were generated by an established spiking neuron model that was reported in our previous work, and the experimental data were provided using single-unit microelectrode recordings (MERs) during DBS (microelectrode stimulation). Based on these data, we developed a novel mathematical model to represent the firing rate of neurons receiving DBS, including neurons in STN, SNr, and Vim-across different DBS frequencies. In our model, the DBS pulses were filtered through a synapse model and a nonlinear transfer function to formulate the firing rate variability. For each DBS-targeted nucleus, we fitted a single set of optimal model parameters consistent across varying DBS frequencies. RESULTS: Our model accurately reproduced the firing rates observed and calculated from both synthetic and experimental data. The optimal model parameters were consistent across different DBS frequencies. CONCLUSIONS: The result of our model fitting was in agreement with experimental single-unit MER data during DBS. Reproducing neuronal firing rates of different nuclei of the basal ganglia and thalamus during DBS can be helpful to further understand the mechanisms of DBS and to potentially optimize stimulation parameters based on their actual effects on neuronal activity.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Humanos , Ganglios Basales/fisiología , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Neuronas/fisiología
9.
Neurobiol Dis ; 190: 106384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135193

RESUMEN

External sensory cues can reduce freezing of gait in people with Parkinson's disease (PD), yet the role of the basal ganglia in these movements is unclear. We used microelectrode recordings to examine modulations in single unit (SU) and oscillatory local field potentials (LFP) during auditory-cued rhythmic pedaling movements of the feet. We tested five blocks of increasing cue frequencies (1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz) in 24 people with PD undergoing deep brain stimulation surgery of the subthalamic nucleus (STN) or globus pallidus internus (GPi). Single unit firing and beta band LFPs (13-30 Hz) in response to movement onsets or cue onsets were examined. We found that the timing accuracy of foot pedaling decreased with faster cue frequencies. Increasing cue frequencies also attenuated firing rates in both STN and GPi neurons. Peak beta power in the GPi and STN showed different responses to the task. GPi beta power showed persistent suppression with fast cues and phasic modulation with slow cues. STN beta power showed enhanced beta synchronization following movement. STN beta power also correlated with rate of pedaling. Overall, we showed task-related responses in the GPi and STN during auditory-cued movements with differential roles in sensory and motor control. The results suggest a role for both input and output basal ganglia nuclei in auditory rhythmic pacing of gait-like movements in PD.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Globo Pálido/fisiología , Señales (Psicología) , Núcleo Subtalámico/fisiología , Neuronas/fisiología , Estimulación Encefálica Profunda/métodos
10.
J Econ Entomol ; 116(6): 2104-2115, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37904544

RESUMEN

Exclusion netting in some European and North American apple (Malus domestica Borkhausen, Rosaceae, Rosales) orchards has been documented to be an effective method of control for multiple insect pest species. By minimizing reliance on insecticides, these orchards have reduced costs, risks to the environment and non-target species, and reduced the risk of insecticide resistance. This study examined the use of commercially available hail netting (DrapeNet®; Prosser, WA) as a pest exclusion strategy under conditions in Minnesota, USA. In 2021 and 2022, we assessed the efficacy of hail netting as a tool for pest suppression in orchards by monitoring pest species in netted and open plots crossed with and without insecticide applications. Our findings show that both of the major pest species in Minnesota, the codling moth (Cydia pomonella L.; Lepidoptera: Tortricidae) and the apple maggot (Rhagoletis pomonella Walsh; Diptera: Tephritidae), were significantly reduced inside the netting compared to open plots by 94% and 96%, respectively. For a secondary pest, the red-banded leafroller (Argyrotaenia velutinana Walker; Lepidoptera: Tortricidae), moth populations were reduced by 56%. We also found that insecticide application alone did not significantly reduce pest pressure in these species. Additionally, we investigated the subsequent effects of hail netting on fruit quality and yield. The use of hail netting and insecticide application resulted in significantly higher proportions of high-quality fruit at harvest. However, netting did not significantly influence yield. These findings suggest that hail netting can be used to control Midwest apple insect pests with limited insecticide applications while maintaining high fruit quality.


Asunto(s)
Insecticidas , Malus , Mariposas Nocturnas , Tephritidae , Animales , Insecticidas/farmacología , Frutas , Minnesota , Control de Insectos/métodos
11.
Insects ; 14(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37504584

RESUMEN

Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.

12.
Front Hum Neurosci ; 17: 1082196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180551

RESUMEN

Introduction: Beta oscillations in sensorimotor structures contribute to the planning, sequencing, and stopping of movements, functions that are typically associated with the role of the basal ganglia. The presence of beta oscillations (13-30 Hz) in the cerebellar zone of the thalamus (the ventral intermediate nucleus - Vim) indicates that this rhythm may also be involved in cerebellar functions such as motor learning and visuomotor adaptation. Methods: To investigate the possible role of Vim beta oscillations in visuomotor coordination, we recorded local field potential (LFP) and multiunit activity from the Vim of essential tremor (ET) patients during neurosurgery for the implantation of deep brain stimulation (DBS) electrodes. Using a computer, patients performed a visuomotor adaptation task that required coordinating center-out movements with incongruent visual feedback imposed by inversion of the computer display. Results: The results show that, in ET, Vim beta oscillations of the LFP were lower during the incongruent center-out task than during the congruent orientation. Vim firing rates increased significantly during periods of low beta power, particularly on approach to the peripheral target. In contrast, beta power in the subthalamic nucleus of Parkinson's disease (PD) patients did not differ significantly between the incongruent and the congruent orientation of the center-out task. Discussion: The findings support the hypothesis that beta oscillations of the Vim are modulated by novel visuomotor tasks. The inverse relationship between the power of Vim-LFP beta oscillations and Vim firing rates suggest that the suppression of beta oscillations may facilitate information throughput to the thalamocortical circuit by modulation of Vim firing rates.

13.
NPJ Parkinsons Dis ; 9(1): 46, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973276

RESUMEN

The neurophysiology of selective attention in visual and auditory systems has been studied in animal models but not with single unit recordings in human. Here, we recorded neuronal activity in the ventral intermediate nucleus as well as the ventral oral anterior, and posterior nuclei of the motor thalamus in 25 patients with parkinsonian (n = 6) and non-parkinsonian tremors (n = 19) prior to insertion of deep brain stimulation electrodes while they performed an auditory oddball task. In this task, patients were requested to attend and count the randomly occurring odd or "deviant" tones, ignore the frequent standard tones and report the number of deviant tones at trial completion. The neuronal firing rate decreased compared to baseline during the oddball task. Inhibition was specific to auditory attention as incorrect counting or wrist flicking to the deviant tones did not produce such inhibition. Local field potential analysis showed beta (13-35 Hz) desynchronization in response to deviant tones. Parkinson's disease patients off medications had more beta power than the essential tremor group but less neuronal modulation of beta power to the attended tones, suggesting that dopamine modulates thalamic beta oscillations for selective attention. The current study demonstrated that ascending information to the motor thalamus can be suppressed during auditory attending tasks, providing indirect evidence for the searchlight hypothesis in humans. These results taken together implicate the ventral intermediate nucleus in non-motor cognitive functions, which has implications for the brain circuitry for attention and the pathophysiology of Parkinson's disease.

14.
Mov Disord ; 38(2): 232-243, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36424835

RESUMEN

BACKGROUND: Local field potentials (LFPs) represent the summation of periodic (oscillations) and aperiodic (fractal) signals. Although previous studies showed changes in beta band oscillations and burst characteristics of the subthalamic nucleus (STN) in Parkinson's disease (PD), how aperiodic activity in the STN is related to PD pathophysiology is unknown. OBJECTIVES: The study aimed to characterize the long-term effects of STN-deep brain stimulation (DBS) and dopaminergic medications on aperiodic activities and beta bursts. METHODS: A total of 10 patients with PD participated in this longitudinal study. Simultaneous bilateral STN-LFP recordings were conducted in six separate visits during a period of 18 months using the Activa PC + S device in the off and on dopaminergic medication states. We used irregular-resampling auto-spectral analysis to separate oscillations and aperiodic components (exponent and offset) in the power spectrum of STN-LFP signals in beta band. RESULTS: Our results revealed a systematic increase in both the exponent and the offset of the aperiodic spectrum over 18 months following the DBS implantation, independent of the dopaminergic medication state of patients with PD. In contrast, beta burst durations and amplitudes were stable over time and were suppressed by dopaminergic medications. CONCLUSIONS: These findings indicate that oscillations and aperiodic activities reflect at least partially distinct yet complementary neural mechanisms, which should be considered in the design of robust biomarkers to optimize adaptive DBS. Given the link between increased gamma-aminobutyric acidergic (GABAergic) transmission and higher aperiodic activity, our findings suggest that long-term STN-DBS may relate to increased inhibition in the basal ganglia. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estudios Longitudinales , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Ganglios Basales , Dopaminérgicos/uso terapéutico , Ritmo beta/fisiología
16.
Front Insect Sci ; 3: 1266426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469531

RESUMEN

Apple orchards are highly managed agricultural ecosystems where growers typically rely on insecticides to minimize the risk of pest-related fruit losses. Apple growers practicing integrated pest management require cost-effective alternatives to conventional insecticides for control of major pests such as codling moth (Cydia pomonella L.) and apple maggot (Rhagoletis pomonella Walsh). Exclusion netting has been shown to effectively control multiple insect pest species, limit fruit damage and reduce the use of insecticides while also conferring consumer and environmental benefits. In this study, partial budgeting was applied to explore the financial efficacy of using a hail netting (DrapeNet®) system as a sustainable pest management strategy for Midwest U.S. apple (Malus x domestica). The cost of the hail netting was compared to a common Midwest insecticide spray regimen for apples using yield and quality data from a field study at two Minnesota apple orchards in 2021-2022. The PB analysis indicated that the netting system was an economically competitive alternative to conventional insecticide applications. The economic results were robust across a range of apple prices and yields suggesting that Minnesota apple growers can benefit economically from the application of hail netting for sustainable pest management.

17.
18.
Stereotact Funct Neurosurg ; 100(5-6): 275-281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36446334

RESUMEN

Posterior hypothalamic-deep brain stimulation (pHyp-DBS) has been reported as a successful treatment for reducing refractory aggressive behaviors in patients with distinct primary diagnoses. Here, we report on a patient with cri du chat syndrome presenting severe self-injury and aggressive behaviors toward others, who was treated with pHyp-DBS. Positive results were observed at long-term follow-up in aggressive behavior and quality of life. Intraoperative microdialysis and imaging connectomics analysis were performed to investigate possible mechanisms of action. Our results suggest the involvement of limbic and motor areas and alterations in main neurotransmitter levels in the targeted area that are associated with positive results following treatment.


Asunto(s)
Conectoma , Síndrome del Maullido del Gato , Estimulación Encefálica Profunda , Humanos , Síndrome del Maullido del Gato/complicaciones , Estudios de Seguimiento , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Microdiálisis
19.
Insects ; 13(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135472

RESUMEN

In temperate climates, there has been an increasing interest by fruit growers to implement the use of high tunnels, using a variety of coverings, to extend the season for fruit production. High tunnels also provide an opportunity to enhance insect pest management, via physical exclusion, and thus support reductions in insecticide use. Due to increasing pest pressure by the Japanese beetle, Popillia japonica Newman, in Midwest U.S. raspberry, a 3-year study (2017−2019) was conducted to evaluate the efficacy of selected high tunnel coverings to suppress adult beetle populations and minimize adult feeding injury. During each year of the study, P. japonica adult beetles were significantly reduced under poly-based coverings, with the ends open, and when a fine, nylon-mesh was used to cover the ends (p < 0.05). The poly-based covering also resulted in moderately higher ambient temperatures, which may have influenced beetle movement, including a "repellency effect" that encouraged beetles to exit the high tunnel structures. Although P. japonica adults are known to feed on raspberry flower clusters, including fruit, the majority (73−92%) of beetle feeding in this study was observed on the foliage. The impact of high tunnels on P. japonica are discussed within the context of developing sustainable Integrated Pest Management (IPM) programs for raspberry production.

20.
Brain Stimul ; 15(5): 1223-1232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36058524

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized. OBJECTIVE: The objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr). METHODS: Two microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for Parkinson's disease (PD). Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode. RESULTS: Inhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .013). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation but not in SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003). INTERPRETATION: Persistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Microelectrodos , Enfermedad de Parkinson/terapia , Sustancia Negra , Núcleo Subtalámico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...