Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1413688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175619

RESUMEN

Advancements in cell therapy have the potential to improve healthcare accessibility for eligible patients. However, there are still challenges in scaling production and reducing costs. These challenges involve various stakeholders such as the manufacturing facility, third-party logistics (3PL) company, and medical center. Proposed solutions tend to focus on individual companies rather than addressing the interconnectedness of the supply chain's challenges. The challenges can be categorized as barriers from product characteristics, regulatory requirements, or lagging infrastructure. Each barrier affects multiple stakeholders, especially during a boundary event like product handover. Therefore, solutions that only consider the objectives of one stakeholder fail to address underlying problems. This review examines the interconnecting cell therapy supply chain challenges and how they affect the multiple stakeholders involved. The authors consider whether proposed solutions impact individual stakeholders or the entire supply chain and discuss the benefits of stakeholder coordination-focused solutions such as integrated technologies and information tracking. The review highlights how coordination efforts allow for the implementation of widely-supported cell therapy supply solutions such as decentralized manufacturing through stakeholder collaboration.

2.
J Orthop Translat ; 47: 1-14, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957270

RESUMEN

Background: The deployment of bone grafts (BGs) is critical to the success of scaffold-guided bone regeneration (SGBR) of large bone defects. It is thus critical to provide harvesting devices that maximize osteogenic capacity of the autograft while also minimizing graft damage during collection. As an alternative to the Reamer-Irrigator-Aspirator 2 (RIA 2) system - the gold standard for large-volume graft harvesting used in orthopaedic clinics today - a novel intramedullary BG harvesting concept has been preclinically introduced and referred to as the ARA (aspirator + reaming-aspiration) concept. The ARA concept uses aspiration of the intramedullary content, followed by medullary reaming-aspiration of the endosteal bone. This concept allows greater customization of BG harvesting conditions vis-à-vis the RIA 2 system. Following its successful in vitro validation, we hypothesized that an ARA concept-collected BG would have comparable in vivo osteogenic capacity compared to the RIA 2 system-collected BG. Methods: We used 3D-printed, medical-grade polycaprolactone-hydroxyapatite (mPCL-HA, wt 96 %:4 %) scaffolds with a Voronoi design, loaded with or without different sheep-harvested BGs and tested them in an ectopic bone formation rat model for up to 8 weeks. Results: Active bone regeneration was observed throughout the scaffold-BG constructs, particularly on the surface of the bone chips with endochondral bone formation, and highly vascularized tissue formed within the fully interconnected pore architecture. There were no differences between the BGs derived from the RIA 2 system and the ARA concept in new bone volume formation and in compression tests (Young's modulus, p = 0.74; yield strength, p = 0.50). These results highlight that the osteogenic capacities of the mPCL-HA Voronoi scaffold loaded with BGs from the ARA concept and the RIA 2 system are equivalent. Conclusion: In conclusion, the ARA concept offers a promising alternative to the RIA 2 system for harvesting BGs to be clinically integrated into SGBR strategies. The translational potential of this article: Our results show that biodegradable composite scaffolds loaded with BGs from the novel intramedullary harvesting concept and the RIA 2 system have equivalent osteogenic capacity. Thus, the innovative, highly intuitive intramedullary harvesting concept offers a promising alternative to the RIA 2 system for harvesting bone grafts, which are an important component for the routine translation of SGBR concepts into clinical practice.

3.
Acta Biomater ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960110

RESUMEN

Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.

4.
Bioengineering (Basel) ; 11(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38927829

RESUMEN

Scaffold-guided breast tissue regeneration (SGBTR) can transform both reconstructive and cosmetic breast surgery. Implant-based surgery is the most common method. However, there are inherent limitations, as it involves replacement of tissue rather than regeneration. Regenerating autologous soft tissue has the potential to provide a more like-for-like reconstruction with minimal morbidity. Our SGBTR approach regenerates soft tissue by implanting additively manufactured bioresorbable scaffolds filled with autologous fat graft. A pre-clinical large animal study was conducted by implanting 100 mL breast scaffolds (n = 55) made from medical-grade polycaprolactone into 11 minipigs for 12 months. Various treatment groups were investigated where immediate or delayed autologous fat graft, as well as platelet rich plasma, were added to the scaffolds. Computed tomography and magnetic resonance imaging were performed on explanted scaffolds to determine the volume and distribution of the regenerated tissue. Histological analysis was performed to confirm the tissue type. At 12 months, we were able to regenerate and sustain a mean soft tissue volume of 60.9 ± 4.5 mL (95% CI) across all treatment groups. There was no evidence of capsule formation. There were no immediate or long-term post-operative complications. In conclusion, we were able to regenerate clinically relevant soft tissue volumes utilizing SGBTR in a pre-clinical large animal model.

5.
Tissue Eng Part A ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38756080

RESUMEN

It is currently unknown if surgeons and biomaterial scientists &or tissue engineers (BS&orTE) process and evaluate information in similar or different (un)biased ways. For the gold standard of surgery to move "from bench to bedside," there must naturally be synergies between these key stakeholders' perspectives. Because only a small number of biomaterials and tissue engineering innovations have been translated into the clinic today, we hypothesized that this lack of translation is rooted in the psychology of surgeons and BS&orTE. Presently, both clinicians and researchers doubt the compatibility of surgery and research in their daily routines. This has led to the use of a metaphorical expression "squaring of the circle," which implies an unsolvable challenge. As bone tissue engineering belongs to the top five research areas in tissue engineering, we choose the field of bone defect treatment options for our bias study. Our study uses an online survey instrument for data capture such as incorporating a behavioral economics cognitive framing experiment methodology. Our study sample consisted of surgeons (n = 208) and BS&orTE (n = 59). And we used a convenience sampling method, with participants (conference attendants) being approached both in person and through email between October 22, 2022, and March 13, 2023. We find no distinct positive-negative cognitive framing differences by occupation. That is, any framing bias present in this surgical decision-making setting does not appear to differ significantly between surgeon and BS&orTE specialization. When we explored within-group differences by frames, we see statistically significant (p < 0.05) results for surgeons in the positive frame ranking autologous bone graft transplantation lower than surgeons in the negative frame. Furthermore, surgeons in the positive frame rank Ilizarov bone transport method higher than surgeons in the negative frame (p < 0.05).

6.
Biomaterials ; 309: 122578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38692146

RESUMEN

Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.


Asunto(s)
Bioingeniería , Biopelículas , Prótesis e Implantes , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Prótesis e Implantes/microbiología , Bioingeniería/métodos , Animales , Modelos Biológicos , Infecciones Relacionadas con Prótesis/microbiología , Microambiente Celular
7.
Trends Biotechnol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38614839

RESUMEN

Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.

9.
J Mater Chem B ; 12(26): 6328-6341, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38628083

RESUMEN

The relationship between molecular structure and water dynamics is a fundamental yet often neglected subject in the field of hydrogels for drug delivery, bioprinting, as well as biomaterial science and tissue engineering & regenerative medicine (TE&RM). Water is a fundamental constituent of hydrogel systems and engages via hydrogen bonding with the macromolecular network. The methods and techniques to measure and reveal the phenomena and dynamics of water within hydrogels are still limited. In this work, differential scanning calorimetry (DSC) was used as a quantitative method to analyze freezable (including free and freezable bound) and non-freezable bound water within gelatin methacrylate (GelMA) hydrogels. Nuclear magnetic resonance (NMR) is a complementary method for the study of water behavior and can be used to measure the spin-relaxation of water hydrogen nuclei, which is related to water dynamics. In this research, nuclear magnetic resonance relaxometry was employed to investigate the molecular state of water in GelMA hydrogels using spin-lattice (T1) and spin-spin (T2) spin-relaxation time constants. The data displays a trend of increasing bound water content with increasing GelMA concentration. In addition, T2 values were further applied to calculate microviscosity and translational diffusion coefficients. Water relaxation under various chemical environments, including different media, temperatures, gelatin sources, as well as crosslinking effects, were also examined. These comprehensive physical data sets offer fundamental insight into biomolecule transport within the GelMA hydrogel system, which ultimately are important for drug delivery, bioprinting, as well as biomaterial science and TE&RM communities.


Asunto(s)
Rastreo Diferencial de Calorimetría , Gelatina , Hidrogeles , Metacrilatos , Agua , Hidrogeles/química , Gelatina/química , Agua/química , Metacrilatos/química , Espectroscopía de Resonancia Magnética , Materiales Biocompatibles/química
10.
Arch Orthop Trauma Surg ; 144(4): 1535-1546, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367064

RESUMEN

INTRODUCTION: Fat embolism (FE) following intramedullary (IM) reaming can cause severe pulmonary complications and sudden death. Recently, a new harvesting concept was introduced in which a novel aspirator is used first for bone marrow (BM) aspiration and then for subsequent aspiration of morselized endosteal bone during sequential reaming (A + R + A). In contrast to the established Reamer-Irrigator-Aspirator (RIA) 2 system, the new A + R + A concept allows for the evacuation of fatty BM prior to reaming. In this study, we hypothesized that the risk of FE, associated coagulopathic reactions and pulmonary FE would be comparable between the RIA 2 system and the A + R + A concept. MATERIALS AND METHODS: Intramedullary bone graft was harvested from intact femora of 16 Merino sheep (age: 1-2 years) with either the RIA 2 system (n = 8) or the A + R + A concept (n = 8). Fat intravasation was monitored with the Gurd test, coagulopathic response with D-dimer blood level concentration and pulmonary FE with histological evaluation of the lungs. RESULTS: The total number and average size of intravasated fat particles was similar between groups (p = 0.13 and p = 0.98, respectively). D-dimer concentration did not significantly increase within 4 h after completion of surgery (RIA 2: p = 0.82; A + R + A: p = 0.23), with an interaction effect similar between groups (p = 0.65). The average lung area covered with fat globules was similar between groups (p = 0.17). CONCLUSIONS: The use of the RIA 2 system and the novel A + R + A harvesting concept which consists of BM evacuation followed by sequential IM reaming and aspiration of endosteal bone, resulted in only minor fat intravasation, coagulopathic reactions and pulmonary FE, with no significant differences between the groups. Our results, therefore, suggest that both the RIA 2 system and the new A + R + A concept are comparable technologies in terms of FE-related complications.


Asunto(s)
Embolia Grasa , Fijación Intramedular de Fracturas , Embolia Pulmonar , Humanos , Lactante , Preescolar , Fijación Intramedular de Fracturas/efectos adversos , Fijación Intramedular de Fracturas/métodos , Succión , Trasplante Óseo/métodos , Fémur/cirugía , Embolia Grasa/etiología , Irrigación Terapéutica/efectos adversos , Recolección de Tejidos y Órganos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...