Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Geroscience ; 43(1): 433-442, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33558965

RESUMEN

Estrogen exerts protective effects on the cardiovascular system via three known estrogen receptors: alpha (ERα), beta (ERß), and the G protein-coupled estrogen receptor (GPER). Our laboratory has previously showed the importance of GPER in the beneficial cardiovascular effects of estrogen. Since clinical studies indicate that the protective effects of exogenous estrogen on cardiovascular function are attenuated or reversed 10 years post-menopause, the hypothesis was that GPER expression may be reduced during aging. Vascular reactivity and GPER protein expression were assessed in female mice of varying ages. Physiological parameters, blood pressure, and estrogen receptor transcripts via droplet digital PCR (ddPCR) were assessed in the heart, kidney, and aorta of adult, middle-aged, and aged male and female C57BL/6 mice. Vasodilation to estrogen (E2) and the GPER agonist G-1 were reduced in aging female mice and were accompanied by downregulation of GPER protein. However, ERα and GPER were the predominant receptors in all tissues, whereas ERß was detectable only in the kidney. Female sex was associated with higher mRNA for both ERα and GPER in both the aorta and the heart. Aging impacted receptor transcript in a tissue-dependent manner. ERα transcript decreased in the heart with aging, while GPER expression increased in the heart. These data indicate that aging impacts estrogen receptor expression in the cardiovascular system in a tissue- and sex-specific manner. Understanding the impact of aging on estrogen receptor expression is critical for developing selective hormone therapies that protect from cardiovascular damage.


Asunto(s)
Sistema Cardiovascular , Receptores de Estrógenos , Envejecimiento , Animales , Estrógenos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Biol Sex Differ ; 10(1): 4, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635056

RESUMEN

BACKGROUND: Estrogen is formed by the enzyme aromatase (CYP19A1) and signals via three identified receptors ERα (ESR1), ERß (ESR2), and the G protein-coupled estrogen receptor (GPER). Understanding the relative contribution of each receptor to estrogenic signaling may elucidate the disparate effects of this sex hormone across tissues, and recent developments in PCR technology allow absolute quantification and direct comparison of multiple targets. We hypothesized that this approach would reveal tissue- and sex-specific differences in estrogen receptor mRNA. METHODS: ESR1, ESR2, GPER, and CYP19A1 were measured in four cardiovascular tissues (heart, aorta, kidney, and adrenal gland), three brain areas (somatosensory cortex, hippocampus, and prefrontal cortex), and reproductive tissues (ovaries, mammary gland, uterus, testes) from six male and six female adult Sprague-Dawley rats. RESULTS: GPER mRNA expression was relatively stable across all tissues in both sexes, ranging from 5.49 to 113 copies/ng RNA, a 21-fold difference. In contrast, ESR1/ESR2 were variable across tissues although similar within an organ system. ESR1 ranged from 4.46 to 614 copies/ng RNA (138-fold difference) while ESR2 ranged from 0.154 to 83.1 copies/ng RNA (540-fold). Significant sex differences were broadly absent except for renal ESR1 (female 206 vs. male 614 copies/ng RNA, P < 0.0001) and GPER (62.0 vs. 30.2 copies/ng RNA, P < 0.05) as well as gonadal GPER (5.49 vs. 47.5 copies/ng RNA, P < 0.01), ESR2 (83.1 vs. 0.299 copies/ng RNA, P < 0.01), and CYP19A1 (322 vs. 7.18 copies/ng RNA, P < 0.01). Cardiovascular tissues showed a predominance of ESR1, followed by GPER. In contrast, GPER was the predominant transcript in the brain with similarly low levels of ESR1 and ESR2. CYP19A1 was detected at very low levels except for reproductive tissues and the hippocampus. CONCLUSION: While the data indicates a lack of sex differences in most tissues, significant differences were found in the range of receptor gene expression across tissues as well as in the receptor profile between organ systems. The data provide a guide for future studies by establishing estrogen receptor expression across multiple tissues using absolute PCR quantification. This knowledge on tissue-specific estrogen receptor profiles will aid the development of hormonal therapies that elicit beneficial effects in specific tissues.


Asunto(s)
Receptores de Estrógenos/genética , Caracteres Sexuales , Animales , Línea Celular , Femenino , Masculino , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transcriptoma
3.
Menopause ; 26(2): 172-181, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30130290

RESUMEN

OBJECTIVE: A new strategy for menopausal hormone therapy replaces medroxyprogesterone with the selective estrogen receptor modulator bazedoxifene. While the agonist or antagonist activity of bazedoxifene has been examined in other tissues, the current study explored the impact of bazedoxifene on resistance artery reactivity. We hypothesized that bazedoxifene may induce greater vasoprotective effects than estradiol due to enhanced activation of the G-protein-coupled estrogen receptor. METHODS: We measured the vasodilation of mesenteric resistance arteries from adult male and female wild-type and G-protein-coupled estrogen receptor knockout mice (n = 58) in response to increasing concentrations of bazedoxifene, medroxyprogesterone, and estradiol, and also the impact of these compounds on the responses to phenylephrine and sodium nitroprusside. RESULTS: Bazedoxifene-induced vasorelaxation was greater than estradiol and blunted phenylephrine-induced contraction-an effect not observed with estradiol. Neither estradiol nor bazedoxifene altered relaxation to sodium nitroprusside. The combination of bazedoxifene + estradiol promoted greater vasodilation than medroxyprogesterone + estradiol, and opposed phenylephrine-induced contraction, whereas medroxyprogesterone + estradiol failed to attenuate this response. Both bazedoxifene + estradiol and medroxyprogesterone + estradiol enhanced sodium nitroprusside-induced relaxation in females. Vascular responses were similar in both sexes in wild-type and G-protein-coupled estrogen receptor knockout mice. CONCLUSION: Bazedoxifene and bazedoxifene + estradiol relaxed mesenteric arteries and opposed vasoconstriction to a greater degree than estradiol or medroxyprogesterone + estradiol. These effects were independent of sex and G-protein-coupled estrogen receptor expression. We conclude that bazedoxifene may provide vascular benefits over estrogen alone or estrogen plus progestogen combinations in postmenopausal women.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Indoles/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Quimioterapia Combinada , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Medroxiprogesterona/farmacología , Ratones , Ratones Noqueados , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Am J Physiol Renal Physiol ; 312(2): F305-F311, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153915

RESUMEN

Clinical recommendations limit menopausal hormone therapy to a few years, yet the impact of a shorter treatment duration on cardiovascular health is unknown. We hypothesized that both short- and long-term estradiol (E2) treatment exerts positive and lasting effects on blood pressure, vascular reactivity, and renal health. This study was designed to mimic midlife menopause, followed by E2 treatment, that either followed or exceeded the current clinical recommendations. Female Long-Evans retired breeders were ovariectomized (OVX) at 11 mo of age and randomized into three groups: 80-day (80d) vehicle (Veh>Veh), 40-day (40d) E2 + 40d vehicle (E2>Veh), and 80d E2 (E2>E2). In comparison to Veh>Veh, both the E2>Veh and E2>E2 groups had lower systolic blood pressure and enhanced mesenteric relaxation in response to estrogen receptor-α stimulation. Despite the reduced blood pressure, E2>E2 induced renal and cardiac hypertrophy, reduced glomerular filtration, and increased proteinuria. Interestingly, kidneys from E2>Veh rats had significantly fewer tubular casts than both of the other groups. In conclusion, long-term E2 lowered blood pressure but exerted detrimental effects on kidney health in midlife OVX Long-Evans rats, whereas short-term E2 lowered blood pressure and reduced renal damage. These findings highlight that the duration of hormone therapy may be an important factor for renal health in aging postmenopausal women.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Estradiol/administración & dosificación , Riñón/efectos de los fármacos , Animales , Femenino , Arterias Mesentéricas/efectos de los fármacos , Ovariectomía , Ratas , Ratas Long-Evans , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
5.
Am J Physiol Heart Circ Physiol ; 310(8): H953-61, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873963

RESUMEN

The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;P< 0.001). Treatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage.


Asunto(s)
Aorta/efectos de los fármacos , Ciclopentanos/farmacología , Hipertensión/metabolismo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Cloruro de Sodio Dietético , Remodelación Vascular/efectos de los fármacos , Angiotensina II/farmacología , Animales , Animales Congénicos , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Glicosaminoglicanos/metabolismo , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenilefrina/farmacología , Ratas Transgénicas , Receptores Acoplados a Proteínas G/metabolismo , Renina/genética , Renina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...