Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353305

RESUMEN

Simulations of condensed matter systems at the hybrid density functional theory level pose significant computational challenges. The elevated costs arise from the non-local nature of the Hartree-Fock exchange (HFX) in conjunction with the necessity to approach the thermodynamic limit. In this work, we address these issues with the development of a new efficient method for the calculation of HFX in periodic systems, employing k-point sampling. We rely on a local atom-specific resolution-of-the-identity scheme, the use of atom-centered Gaussian type orbitals, and the truncation of the Coulomb interaction to limit computational complexity. Our real-space approach exhibits a scaling that is, at worst, linear with the number of k-points. Issues related to basis set diffuseness are effectively addressed through the auxiliary density matrix method. We report the implementation in the CP2K software package, as well as accuracy and performance benchmarks. This method demonstrates excellent agreement with equivalent Γ-point supercell calculations in terms of relative energies and nuclear gradients. Good strong and weak scaling performances, as well as graphics processing unit (GPU) acceleration, make this implementation a promising candidate for high-performance computing.

3.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214385

RESUMEN

The Random-Phase approximation (RPA) provides an appealing framework for semi-local density functional theory. In its Resolution-of-the-Identity (RI) approach, it is a very accurate and more cost-effective method than most other wavefunction-based correlation methods. For widespread applications, efficient implementations of nuclear gradients for structure optimizations and data sampling of machine learning approaches are required. We report a well scaling implementation of RI-RPA nuclear gradients on massively parallel computers. The approach is applied to two polymorphs of the benzene crystal obtaining very good cohesive and relative energies. Different correction and extrapolation schemes are investigated for further improvement of the results and estimations of error bars.

4.
Chimia (Aarau) ; 77(1-2): 48-55, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38047853

RESUMEN

Micropollutants have become a serious environmental problem by threatening ecosystems and the quality of drinking water. This account investigates if advanced AI can be used to find solutions for this problem. We review background, the challenges involved, and the current state-of-the-art of quantitative structure-biodegradation relationships (QSBR). We report on recent progress combining experiment, quantum chemistry (QC) and chemoinformatics, and provide a perspective on potential future uses of AI technology to help improve water quality.

5.
Nat Commun ; 14(1): 6131, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783698

RESUMEN

Water adsorption and dissociation processes on pristine low-index TiO2 interfaces are important but poorly understood outside the well-studied anatase (101) and rutile (110). To understand these, we construct three sets of machine learning potentials that are simultaneously applicable to various TiO2 surfaces, based on three density-functional-theory approximations. Here we show the water dissociation free energies on seven pristine TiO2 surfaces, and predict that anatase (100), anatase (110), rutile (001), and rutile (011) favor water dissociation, anatase (101) and rutile (100) have mostly molecular adsorption, while the simulations of rutile (110) sensitively depend on the slab thickness and molecular adsorption is preferred with thick slabs. Moreover, using an automated algorithm, we reveal that these surfaces follow different types of atomistic mechanisms for proton transfer and water dissociation: one-step, two-step, or both. These mechanisms can be rationalized based on the arrangements of water molecules on the different surfaces. Our finding thus demonstrates that the different pristine TiO2 surfaces react with water in distinct ways, and cannot be represented using just the low-energy anatase (101) and rutile (110) surfaces.

6.
Phys Chem Chem Phys ; 25(31): 20817-20836, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37497572

RESUMEN

We study self-interaction effects in solvated and strongly-correlated cationic molecular clusters, with a focus on the solvated hydroxyl radical. To address the self-interaction issue, we apply the DC-r2SCAN method, with the auxiliary density matrix approach. Validating our method through simulations of bulk liquid water, we demonstrate that DC-r2SCAN maintains the structural accuracy of r2SCAN while effectively addressing spin density localization issues. Extending our analysis to solvated cationic molecular clusters, we find that the hemibonded motif in the [CH3S∴CH3SH]+ cluster is disrupted in the DC-r2SCAN simulation, in contrast to r2SCAN that preserves the (three-electron-two-center)-bonded motif. Similarly, for the [SH∴SH2]+ cluster, r2SCAN restores the hemibonded motif through spin leakage, while DC-r2SCAN predicts a weaker hemibond formation influenced by solvent-solute interactions. Our findings demonstrate the potential of DC-r2SCAN combined with the auxiliary density matrix method to improve electronic structure calculations, providing insights into the properties of solvated cationic molecular clusters. This work contributes to the advancement of self-interaction corrected electronic structure theory and offers a computational framework for modeling condensed phase systems with intricate correlation effects.

7.
J Chem Phys ; 158(16)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37102449

RESUMEN

The development of novel double-hybrid density functionals offers new levels of accuracy and is leading to fresh insights into the fundamental properties of matter. Hartree-Fock exact exchange and correlated wave function methods, such as second-order Møller-Plesset (MP2) and direct random phase approximation (dRPA), are usually required to build such functionals. Their high computational cost is a concern, and their application to large and periodic systems is, therefore, limited. In this work, low-scaling methods for Hartree-Fock exchange (HFX), SOS-MP2, and direct RPA energy gradients are developed and implemented in the CP2K software package. The use of the resolution-of-the-identity approximation with a short range metric and atom-centered basis functions leads to sparsity, allowing for sparse tensor contractions to take place. These operations are efficiently performed with the newly developed Distributed Block-sparse Tensors (DBT) and Distributed Block-sparse Matrices (DBM) libraries, which scale to hundreds of graphics processing unit (GPU) nodes. The resulting methods, resolution-of-the-identity (RI)-HFX, SOS-MP2, and dRPA, were benchmarked on large supercomputers. They exhibit favorable sub-cubic scaling with system size, good strong scaling performance, and GPU acceleration up to a factor of 3. These developments will allow for double-hybrid level calculations of large and periodic condensed phase systems to take place on a more regular basis.

8.
J Chem Phys ; 158(5): 054111, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754794

RESUMEN

Accurate descriptions of intermolecular interactions are of great importance in simulations of molecular liquids. We present an electronic structure method that combines the accuracy of the Harris functional approach with the computational efficiency of approximately linear-scaling density functional theory (DFT). The non-variational nature of the Harris functional has been addressed by constructing a Lagrangian energy functional, which restores the variational condition by imposing stationarity with respect to the reference density. The associated linear response equations may be treated with linear-scaling efficiency in an atomic orbital based scheme. Key ingredients to describe the structural and dynamical properties of molecular systems are the forces acting on the atoms and the stress tensor. These first-order derivatives of the Harris Lagrangian have been derived and implemented in consistence with the energy correction. The proposed method allows for simulations with accuracies close to the Kohn-Sham DFT reference. Embedded in the CP2K program package, the method is designed to enable ab initio molecular dynamics simulations of molecular solutions for system sizes of several thousand atoms. Available subsystem DFT methods may be used to provide the reference density required for the energy correction at near linear-scaling efficiency. As an example of production applications, we applied the method to molecular dynamics simulations of the binary mixtures cyclohexane-methanol and toluene-methanol, performed within the isobaric-isothermal ensemble, to investigate the hydrogen bonding network in these non-ideal mixtures.

9.
J Chem Theory Comput ; 18(7): 4186-4202, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759470

RESUMEN

Time-dependent density functional theory has become state-of-the-art for describing photophysical and photochemical processes in extended materials because of its affordable cost. The inclusion of exact exchange was shown to be essential for the correct description of the long-range asymptotics of electronic interactions and thus a well-balanced description of valence, Rydberg, and charge-transfer excitations. Several approaches for an efficient treatment of exact exchange have been established for the ground state, while implementations for excited-state properties are rare. Furthermore, the high computational costs required for excited-state properties in comparison to ground-state computations often hinder large-scale applications on periodic systems with hybrid functional accuracy. We therefore propose two approximate schemes for improving computational efficiency for the treatment of exact exchange. Within the auxiliary density matrix method (ADMM), exact exchange is estimated using a relatively small auxiliary basis and the introduced basis set incompleteness error is compensated by an exchange density functional correction term. Benchmark results for a test set of 35 molecules demonstrate that the mean absolute error introduced by ADMM is smaller than 0.3 pm for excited-state bond lengths and in the range of 0.02-0.04 eV for vertical excitation, adiabatic excitation, and fluorescence energies. Computational timings for a series of covalent-organic frameworks demonstrate that a speed-up of at least 1 order of magnitude can be achieved for excited-state geometry optimizations in comparison to conventional hybrid functionals. The second method is to use a semiempirical tight binding approximation for both Coulomb and exchange contributions to the excited-state kernel. This simplified Tamm-Dancoff approximation (sTDA) achieves an accuracy comparable to approximated hybrid density functional theory when referring to highly accurate coupled-cluster reference data. We find that excited-state bond lengths deviate by 1.1 pm on average and mean absolute errors in vertical excitation, adiabatic excitation, and fluorescence energies are in the range of 0.2-0.5 eV. In comparison to ADMM-approximated hybrid functional theory, sTDA accelerates the computation of broad-band excitation spectra by 1 order of magnitude, suggesting its potential use for large-scale screening purposes.

10.
J Chem Phys ; 156(7): 074107, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35183084

RESUMEN

Due to their improved accuracy, double-hybrid density functionals emerged as an important method for molecular electronic-structure calculations. The high computational costs of double-hybrid calculations in the condensed phase and the lack of efficient gradient implementations thereof inhibit a wide applicability for periodic systems. We present an implementation of forces and stress tensors for double-hybrid density functionals within the Gaussian and plane-waves electronic structure framework. The auxiliary density matrix method is used to reduce the overhead of the Hartree-Fock kernel providing an efficient and accurate methodology to tackle condensed phase systems. First applications to water systems of different densities and molecular crystals show the efficiency of the implementation and pave the way for advanced studies. Finally, we present large benchmark systems to discuss the performance of our implementation on modern large-scale computers.

11.
J Chem Phys ; 155(3): 034108, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293885

RESUMEN

Linear-response time-dependent density functional theory (LR-TDDFT) for core level spectroscopy using standard local functionals suffers from self-interaction error and a lack of orbital relaxation upon creation of the core hole. As a result, LR-TDDFT calculated x-ray absorption near edge structure spectra needed to be shifted along the energy axis to match experimental data. We propose a correction scheme based on many-body perturbation theory to calculate the shift from first-principles. The ionization potential of the core donor state is first computed and then substituted for the corresponding Kohn-Sham orbital energy, thus emulating Koopmans's condition. Both self-interaction error and orbital relaxation are taken into account. The method exploits the localized nature of core states for efficiency and integrates seamlessly in our previous implementation of core level LR-TDDFT, yielding corrected spectra in a single calculation. We benchmark the correction scheme on molecules at the K- and L-edges as well as for core binding energies and report accuracies comparable to higher order methods. We also demonstrate applicability in large and extended systems and discuss efficient approximations.

12.
Phys Chem Chem Phys ; 23(8): 4736-4746, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33598668

RESUMEN

We discuss our implementation of linear-response time-dependent density functional theory (LR-TDDFT) for core level near-edge absorption spectroscopy. The method is based on established LR-TDDFT approaches to X-ray absorption spectroscopy (XAS) with additional accurate approximations for increased efficiency. We validate our implementation by reproducing benchmark results at the K-edge and showing that spin-orbit coupling effects at the L2,3-edge are well described. We also demonstrate that the method is suitable for extended systems in periodic boundary conditions and measure a favorable sub-cubic scaling of the calculation cost with system size. We finally show that GPUs can be efficiently exploited and report speedups of up to a factor 2.

13.
Molecules ; 25(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172070

RESUMEN

Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to the super cell size are discussed for two different large basis sets.


Asunto(s)
Modelos Moleculares , Amoníaco/química , Cristalización , Teoría Funcional de la Densidad , Cianuro de Hidrógeno/química , Modelos Químicos , Distribución Normal
14.
Phys Chem Chem Phys ; 22(19): 10641-10652, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31894785

RESUMEN

The ability to reproduce the experimental structure of water around the sodium and potassium ions is a key test of the quality of interaction potentials due to the central importance of these ions in a wide range of important phenomena. Here, we simulate the Na+ and K+ ions in bulk water using three density functional theory functionals: (1) the generalized gradient approximation (GGA) based dispersion corrected revised Perdew, Burke, and Ernzerhof functional (revPBE-D3) (2) the recently developed strongly constrained and appropriately normed (SCAN) functional (3) the random phase approximation (RPA) functional for potassium. We compare with experimental X-ray diffraction (XRD) and X-ray absorption fine structure (EXAFS) measurements to demonstrate that SCAN accurately reproduces key structural details of the hydration structure around the sodium and potassium cations, whereas revPBE-D3 fails to do so. However, we show that SCAN provides a worse description of pure water in comparison with revPBE-D3. RPA also shows an improvement for K+, but slow convergence prevents rigorous comparison. Finally, we analyse cluster energetics to show SCAN and RPA have smaller fluctuations of the mean error of ion-water cluster binding energies compared with revPBE-D3.

15.
J Chem Phys ; 152(19): 194103, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33687235

RESUMEN

CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.

16.
J Phys Chem Lett ; 10(14): 3871-3876, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31241948

RESUMEN

Surfaces of metal oxides at working conditions are usually electrified because of the acid-base chemistry. The charged interface compensated with counterions forms the so-called electric double layer. The coupling of surface chemistry and the electric double layer is considered to be crucial but is poorly understood because of the lack of information at the atomistic scale. Here, we used the latest development in density functional theory-based finite-field molecular dynamics simulation to investigate the pH dependence of the Helmholtz capacitance at electrified rutile TiO2(110)-NaCl electrolyte interfaces. It is found that, because of competing forces from surface adsorption and from the electric double layer, water molecules have a stronger structural fluctuation at high pH, and this leads to a much larger capacitance. It is also seen that interfacial proton transfers at low pH increase significantly the capacitance value. These findings elucidate the microscopic origin of the same trend observed in titration experiments.

17.
J Chem Theory Comput ; 14(1): 377-394, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29182320

RESUMEN

Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li3V2(PO4)3, for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

18.
J Phys Chem Lett ; 9(2): 306-312, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29280376

RESUMEN

The GW approximation of many-body perturbation theory is an accurate method for computing electron addition and removal energies of molecules and solids. In a canonical implementation, however, its computational cost is [Formula: see text] in the system size N, which prohibits its application to many systems of interest. We present a full-frequency GW algorithm in a Gaussian-type basis, whose computational cost scales with N2 to N3. The implementation is optimized for massively parallel execution on state-of-the-art supercomputers and is suitable for nanostructures and molecules in the gas, liquid or condensed phase, using either pseudopotentials or all electrons. We validate the accuracy of the algorithm on the GW100 molecular test set, finding mean absolute deviations of 35 meV for ionization potentials and 27 meV for electron affinities. Furthermore, we study the length-dependence of quasiparticle energies in armchair graphene nanoribbons of up to 1734 atoms in size, and compute the local density of states across a nanoscale heterojunction.

19.
J Chem Phys ; 146(24): 244501, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668048

RESUMEN

First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

20.
Nanoscale ; 9(25): 8756-8763, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28616947

RESUMEN

Metal complexes of the tetradentate bipyridine based macrocycle pyrphyrin (Pyr) have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on stoichiometric TiO2(110) is investigated in ultrahigh vacuum by means of scanning tunneling microscopy, photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. In a joint experimental and computational effort, the local adsorption geometry at low coverage, the long-range molecular ordering at higher coverage and the electronic structure have been determined for both the bare ligand and the cobalt-metalated Pyr molecule on TiO2. The energy level alignment of CoPyr/TiO2 supports electron injection into TiO2 upon photoexcitation of the CoPyr complex and thus renders it a potential sensitizer dye. Importantly, Co-incorporation is found to stabilize the Pyr molecule against photo-induced degradation, while the bare ligand is decomposed rapidly under continuous UV-irradiation. This interesting phenomenon is discussed in terms of additional de-excitation channels for electronically highly excited molecular states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...